arguments.py 49.6 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vision_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
69
70
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
71
        if args.standalone_embedding_stage else
72
73
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
74
    # Checks.
75
76
77
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
78
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
79
80
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
81
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
82
    if args.rank == 0:
mohammad's avatar
mohammad committed
83
84
85
86
87
88
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
89
90
91
92
93
94
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
95

96
97
98
99
100
101
102
103
104
105
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
106

107
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
108
109
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
110
111
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
112
113
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
114
    del args.checkpoint_activations
115

Vijay Korthikanti's avatar
Vijay Korthikanti committed
116
117
118
119
120
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
        args.recompute_method = 'uniform'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
135
136
137
138
139
140
141
142
143
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
144
    if args.num_layers_per_virtual_pipeline_stage is not None:
145
146
147
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
148
149
150
151
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
152
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
153
154
155
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
156

157
158
159
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160
        assert not args.bf16
161
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162
163
164
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
165
166
167
168
169
170
171
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172

173
174
175
176
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

177
178
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
179
180
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
181
        assert args.use_contiguous_buffers_in_local_ddp
Sangkug Lym's avatar
Sangkug Lym committed
182
183
184
185
186
187
188
189
    else:
        if args.gradient_accumulation_fusion:
            args.gradient_accumulation_fusion = False
            if args.rank == 0:
                print('Gradient accumulation fusion to linear layer weight '
                      'gradient computation is supported only with fp32 '
                      'gradient accumulation. Setting gradient_accumulation_fusion '
                      'to False', flush=True)
190

mshoeybi's avatar
mshoeybi committed
191
192
193
194
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

195
196
197
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

198
199
200
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
201

202
203
204
205
206
207
208
209
210
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
211
            'expected iteration-based learning rate warmup'
212
213
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
214
        if args.lr_warmup_fraction is not None:
215
            assert args.lr_warmup_iters == 0, \
216
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
217
218
219
220
221
222
223
224
225
226
227

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
228
        if args.lr_warmup_fraction is not None:
229
            assert args.lr_warmup_samples == 0, \
230
231
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
232

233
    # Check required arguments.
Mohammad's avatar
Mohammad committed
234
235
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
236
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
237
        _check_arg_is_not_none(args, req_arg)
238

Mohammad's avatar
Mohammad committed
239
    # Checks.
240
241
242
243
244
245
246
247
248
249
250
251
252
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
253

Mohammad's avatar
Mohammad committed
254
255
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
256
257
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
258
259
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
260
261
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
262
263
264
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
265
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
266
267
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
268

Vijay Korthikanti's avatar
Vijay Korthikanti committed
269
270
271
272
273
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
274
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
275
276
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
277

Sangkug Lym's avatar
Sangkug Lym committed
278
279
280
281
282
283
284
285
286
287
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
288
289
    # Activation recomputing.
    if args.distribute_recomputed_activations:
290
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
291
            'recomputed activations only across tensor model ' \
292
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
293
294
295
296
297
298
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
299
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
300
            'distributed recompute activations are supported for pytorch ' \
301
302
303
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
304
305
306
307
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
308
309
        
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
310
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
311
312
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
313

Mohammad's avatar
Mohammad committed
314
315
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
316
317


Mohammad's avatar
Mohammad committed
318
319
320
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
321
322
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
323
324
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
325
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
326
327
328
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
329
330
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
331
332


333
334
335
336
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
337
338
339
340
341
342
343
344
345
346
347
348
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
349
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
350
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
351

352
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
353
                       help='Number of transformer layers.')
354
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
355
                       help='Tansformer hidden size.')
356
    group.add_argument('--ffn-hidden-size', type=int, default=None,
357
358
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
359
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
360
                       help='Number of transformer attention heads.')
361
    group.add_argument('--kv-channels', type=int, default=None,
362
363
364
365
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
366
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
367
368
369
370
371
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
372
373
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
374
375
376
377
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
378
379
380
381
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
382
    group.add_argument('--onnx-safe', type=bool, required=False,
383
384
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
385
386
387
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
388
389
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
390
391
392
    return parser


393
394
395
396
397
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
398
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
399
                       help='If set, calculate and log the number of zeros in gradient.')
400
401
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
402
403
404
405
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
422
423
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
424
                       help='Enable memory logging to tensorboard.')
425
426
427
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
428
429
430
431

    return parser


Mohammad's avatar
Mohammad committed
432
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
433
434
435
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
436
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
437
438
439
440
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
441
    group.add_argument('--start-weight-decay', type=float,
442
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
443
    group.add_argument('--end-weight-decay', type=float,
444
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
445
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
446
447
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
448
449
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
450
    group.add_argument('--adam-beta1', type=float, default=0.9,
451
452
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
453
    group.add_argument('--adam-beta2', type=float, default=0.999,
454
455
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
456
    group.add_argument('--adam-eps', type=float, default=1e-08,
457
                       help='Term added to the denominator to improve'
458
                       'numerical stability')
459
460
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
461
462
463

    return parser

Mohammad's avatar
Mohammad committed
464
465

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
466
467
    group = parser.add_argument_group(title='training')

468
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
469
470
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
471
                       'parallel size times number of micro batches.')
472
473
474
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
475
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
476
477
478
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
479
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
480
481
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
482
483
484
485
486
487
488
489
490
491
492
493
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
494
495
496
497
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
498
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
499
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
500
501
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
502
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
503
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
504
505
                       'layer is recomputed.')
    group.add_argument('--distribute-recomputed-activations',
506
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
507
                       help='If set, distribute recomputed activations '
508
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
509
    group.add_argument('--recompute-method', type=str, default=None,
510
511
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
512
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
513
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
514
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
515
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
516
517
518
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
519
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
520
                       'uniformly divided recompute unit, '
521
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
522
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
523
524
525
526
527

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
528
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
529
                       help='Total number of iterations to train over all '
530
531
532
533
534
535
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
536
537
538
539
540
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
541
542
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
543
544
545
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
546
547
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
548
    group.add_argument('--no-masked-softmax-fusion',
549
550
551
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
552
                       dest='masked_softmax_fusion')
553
554
555
556
557
558
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
559
560
561
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
562
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
563
564
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
565
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
566
                       action='store_false',
slym's avatar
slym committed
567
568
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
569
570
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
571
572
573
574
575
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
576
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
577
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
578
579
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
580
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
581
582
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
583
584
585
    return parser


Mohammad's avatar
Mohammad committed
586
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
587
588
589
590
591
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
592
593
594
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
595
596
597
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
598
599
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
600

Mohammad's avatar
Mohammad committed
601
602
603
    return parser


Mohammad's avatar
Mohammad committed
604
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
605
606
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
607
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
608
609
610
611
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
612
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
613
614
615
616
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
617
618
619
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
620
621
622
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
623
624
625
626
627
628
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
629
    group.add_argument('--warmup', type=int, default=None,
630
                       help='Old lr warmup argument, do not use. Use one of the'
631
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
632
633
634
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
635
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
636
637
638
639
640
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
641
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
642
643
644
645
646
647
648
649
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
650
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
651
652
653
654
655
656
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
657
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
658
                       help='Do not save current optimizer.')
659
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
660
661
662
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
663
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
664
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
665
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
666
667
668
669
670
671
672
673
674
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
675
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
676
677
678
679
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
680
681
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
682
683
684
685
686
687
688
689
690
691
692
693
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
694
695
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
696
697
698
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
699
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
700
701
702
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
703
704
705
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
706
707
708
709
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
710
711
712
    return parser


Mohammad's avatar
Mohammad committed
713
def _add_distributed_args(parser):
714
715
    group = parser.add_argument_group(title='distributed')

716
717
718
719
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
720
721
722
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
723
724
725
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
726
727
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
728
729
730
731
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
732
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
733
734
                       help='which DistributedDataParallel implementation '
                       'to use.')
735
736
737
738
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
739
740
741
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
742
743
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
744
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
745
746
747
748
749
750
751
752
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
753
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
754
755
756
757
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
758
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
759
760
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
761
762
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
Mohammad's avatar
Mohammad committed
763
764
765
    return parser


Mohammad's avatar
Mohammad committed
766
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
767
768
769
770
771
772
773
774
775
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
776
777
778
    return parser


Mohammad's avatar
Mohammad committed
779
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
780
781
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
782
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
783
784
785
786
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
787
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
788
789
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
790
791
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
792
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
793
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
794
795
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
796
797
798
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
799
    group.add_argument('--seq-length', type=int, default=None,
800
                       help='Maximum sequence length to process.')
801
    group.add_argument('--encoder-seq-length', type=int, default=None,
802
803
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
804
805
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
806
807
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
808
                        ' for retriever')
809
810
811
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
812
813
814
815
816
817
818
819
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
820
821
822
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
823
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
824
825
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
826
827
828
829
830
831
832
833
834
835
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
836

Mohammad's avatar
Mohammad committed
837
838
    return parser

Raul Puri's avatar
Raul Puri committed
839

Mohammad's avatar
Mohammad committed
840
841
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
842

Mohammad's avatar
Mohammad committed
843
844
845
846
847
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
848

Mohammad's avatar
Mohammad committed
849
    return parser
Neel Kant's avatar
Neel Kant committed
850
851


Mostofa Patwary's avatar
Mostofa Patwary committed
852
853
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
854
855
856

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
857
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
858
                        'REALM (paper default: 128)')
859
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
860
861
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
862
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
863
864
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
865
866
867
868
869

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
870
871
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
872
873
874
875
876

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
877
878
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
879
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
880
                       help='Whether to use one sentence documents in ICT')
881
882
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
883

884
    # training
885
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
886
887
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
888
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
889
890
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
891

Neel Kant's avatar
Neel Kant committed
892
    # faiss index
Neel Kant's avatar
Neel Kant committed
893
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
894
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
895
896
897
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
898
899
900

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
901
902
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
903
    group.add_argument('--indexer-log-interval', type=int, default=1000,
904
905
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
906
    return parser
907
908


909
910
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
911

912
    # general vision arguements
913
914
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
915
916
917
918
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
919
920
921
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
922
                       help='patch dimension')
923
924
925
926
927
928
929
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
930
931
932
933
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
934
935
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
936
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
937
                       choices=['classify', 'inpaint', 'dino'],
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
974
975

    return parser