arguments.py 44.4 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vit_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
84
85
86
87
88
89
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
90

91
92
93
94
95
96
97
98
99
100
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
101
102
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
103
104
105
106
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
107
    del args.checkpoint_activations
108

Jared Casper's avatar
Jared Casper committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
123
124
125
126
127
128
129
130
131
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
132
    if args.num_layers_per_virtual_pipeline_stage is not None:
133
134
135
136
137
        # >>> [ temporarily turning off ]
        # assert args.pipeline_model_parallel_size > 2, \
        #     'pipeline-model-parallel size should be greater than 2 with ' \
        #     'interleaved schedule'
        # <<<
138
139
140
141
142
143
144
145
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
146

147
148
149
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
        assert not args.bf16
151
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
152
153
154
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155
156
157
158
159
160
161
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162

163
164
165
166
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

167
168
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169
170
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
171
        assert args.use_contiguous_buffers_in_local_ddp
172

173
174
175
176
177
178
179
180
    # >>>
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
    # <<<

mshoeybi's avatar
mshoeybi committed
181
182
183
184
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

185
186
187
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

188
189
190
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
191

192
193
194
195
196
197
198
199
200
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
201
            'expected iteration-based learning rate warmup'
202
203
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
204
        if args.lr_warmup_fraction is not None:
205
            assert args.lr_warmup_iters == 0, \
206
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
207
208
209
210
211
212
213
214
215
216
217

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
218
        if args.lr_warmup_fraction is not None:
219
            assert args.lr_warmup_samples == 0, \
220
221
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
222

223
    # Check required arguments.
Mohammad's avatar
Mohammad committed
224
225
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
226
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
227
        _check_arg_is_not_none(args, req_arg)
228

Mohammad's avatar
Mohammad committed
229
    # Checks.
230
231
232
233
234
235
236
237
238
239
240
241
242
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
243

Mohammad's avatar
Mohammad committed
244
245
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
246
247
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
248
249
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
250
251
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
252
253
254
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
255
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
256
257
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
258

Vijay Korthikanti's avatar
Vijay Korthikanti committed
259
260
261
262
263
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
264
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
265
266
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
267

Sangkug Lym's avatar
Sangkug Lym committed
268
269
270
271
272
273
274
275
276
277
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

278
279
280
281
282
283
284
285
286
287
288
289
290
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
        assert args.activations_checkpoint_method is not None, \
            'for distributed checkpoint activations to work you '\
            'need to use a activation-checkpoint method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed checkpoint activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Mohammad's avatar
Mohammad committed
291
292
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
293
294


Mohammad's avatar
Mohammad committed
295
296
297
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
298
299
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
300
301
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
302
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
303
304
305
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
306
307
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
308
309


310
311
312
313
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
314
315
316
317
318
319
320
321
322
323
324
325
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
326
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
327
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
328

329
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
330
                       help='Number of transformer layers.')
331
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
332
                       help='Tansformer hidden size.')
333
    group.add_argument('--ffn-hidden-size', type=int, default=None,
334
335
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
336
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
337
                       help='Number of transformer attention heads.')
338
    group.add_argument('--kv-channels', type=int, default=None,
339
340
341
342
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
343
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
344
345
346
347
348
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
349
350
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
351
352
353
354
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
355
356
357
358
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
359
    group.add_argument('--onnx-safe', type=bool, required=False,
360
361
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
362
363
364
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
365

Mohammad's avatar
Mohammad committed
366
367
368
    return parser


369
370
371
372
373
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
374
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
375
                       help='If set, calculate and log the number of zeros in gradient.')
376
377
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
378
379
380
381
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
398
399
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
400
                       help='Enable memory logging to tensorboard.')
401
402
403
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
404
405
406
407

    return parser


Mohammad's avatar
Mohammad committed
408
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
409
410
411
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
412
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
413
414
415
416
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
417
    group.add_argument('--start-weight-decay', type=float,
418
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
419
    group.add_argument('--end-weight-decay', type=float,
420
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
421
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
422
423
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
424
425
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
426
    group.add_argument('--adam-beta1', type=float, default=0.9,
427
428
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
429
    group.add_argument('--adam-beta2', type=float, default=0.999,
430
431
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
432
    group.add_argument('--adam-eps', type=float, default=1e-08,
433
                       help='Term added to the denominator to improve'
434
                       'numerical stability')
435
436
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
437
438
439

    return parser

Mohammad's avatar
Mohammad committed
440
441

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
442
443
    group = parser.add_argument_group(title='training')

444
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
445
446
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
447
                       'parallel size times number of micro batches.')
448
449
450
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
451
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
452
453
454
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
455
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
456
457
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
458
459
460
461
462
463
464
465
466
467
468
469
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
470
471
472
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
473
474
475
476
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
477
478
479
480
481
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
482
483
484
485
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
486
487
488
489
490
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
491
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
492
                       help='Total number of iterations to train over all '
493
494
495
496
497
498
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
499
500
501
502
503
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
504
505
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
506
507
508
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
509
510
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
511
    group.add_argument('--no-masked-softmax-fusion',
512
513
514
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
515
                       dest='masked_softmax_fusion')
516
517
518
519
520
521
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
522
523
524
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
525
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
526
527
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
528
529
530
531
532
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_true',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.')
Sangkug Lym's avatar
Sangkug Lym committed
533
534
535
536
537
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Mohammad's avatar
Mohammad committed
538
539
540
    return parser


Mohammad's avatar
Mohammad committed
541
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
542
543
544
545
546
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
547
548
549
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
550
551
552
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
553
554
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
555

Mohammad's avatar
Mohammad committed
556
557
558
    return parser


Mohammad's avatar
Mohammad committed
559
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
560
561
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
562
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
563
564
565
566
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
567
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
568
569
570
571
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
572
573
574
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
575
576
577
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
578
579
580
581
582
583
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
584
    group.add_argument('--warmup', type=int, default=None,
585
                       help='Old lr warmup argument, do not use. Use one of the'
586
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
587
588
589
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
590
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
591
592
593
594
595
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
596
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
597
598
599
600
601
602
603
604
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
605
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
606
607
608
609
610
611
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
612
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
613
                       help='Do not save current optimizer.')
614
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
615
616
617
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
618
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
619
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
620
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
621
622
623
624
625
626
627
628
629
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
630
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
631
632
633
634
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
635
636
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
637
638
639
640
641
642
643
644
645
646
647
648
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
649
650
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
651
652
653
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
654
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
655
656
657
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
658
659
660
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
661
662
663
664
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
665
666
667
    return parser


Mohammad's avatar
Mohammad committed
668
def _add_distributed_args(parser):
669
670
    group = parser.add_argument_group(title='distributed')

671
672
673
674
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
675
676
677
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
678
679
680
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
681
682
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
683
684
685
686
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
687
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
688
689
                       help='which DistributedDataParallel implementation '
                       'to use.')
690
691
692
693
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
694
695
696
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
697
698
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
699
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
700
701
702
703
704
705
706
707
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
708
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
709
710
711
712
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
713
714
715
716
    # >>>
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
    # <<<
Mohammad's avatar
Mohammad committed
717
718
719
    return parser


Mohammad's avatar
Mohammad committed
720
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
721
722
723
724
725
726
727
728
729
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
730
731
732
    return parser


Mohammad's avatar
Mohammad committed
733
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
734
735
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
736
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
737
738
739
740
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
741
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
742
743
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
744
745
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
746
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
747
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
748
749
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
750
751
752
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
753
    group.add_argument('--seq-length', type=int, default=None,
754
                       help='Maximum sequence length to process.')
755
    group.add_argument('--encoder-seq-length', type=int, default=None,
756
757
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
758
759
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
760
761
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
762
                        ' for retriever')
763
764
765
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
766
767
768
769
770
771
772
773
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
774
775
776
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
777
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
778
779
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
780
781
782
783
784
785
786
787
788
789
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
790

Mohammad's avatar
Mohammad committed
791
792
    return parser

Raul Puri's avatar
Raul Puri committed
793

Mohammad's avatar
Mohammad committed
794
795
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
796

Mohammad's avatar
Mohammad committed
797
798
799
800
801
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
802

Mohammad's avatar
Mohammad committed
803
    return parser
Neel Kant's avatar
Neel Kant committed
804
805


Mostofa Patwary's avatar
Mostofa Patwary committed
806
807
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
808
809
810

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
811
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
812
                        'REALM (paper default: 128)')
813
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
814
815
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
816
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
817
818
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
819
820
821
822
823

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
824
825
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
826
827
828
829
830

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
831
832
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
833
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
834
                       help='Whether to use one sentence documents in ICT')
835
836
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
837

838
    # training
839
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
840
841
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
842
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
843
844
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
845

Neel Kant's avatar
Neel Kant committed
846
    # faiss index
Neel Kant's avatar
Neel Kant committed
847
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
848
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
849
850
851
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
852
853
854

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
855
856
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
857
    group.add_argument('--indexer-log-interval', type=int, default=1000,
858
859
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
860
    return parser
861
862
863
864
865
866
867


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
868
869
870
871
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
872
873
874
875
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')
876
877
878
879
880
881
882
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
883
884

    return parser