Commit 0aff3629 authored by Rewon Child's avatar Rewon Child
Browse files

Update argument names and fix merge error

parent 41a64613
...@@ -308,7 +308,7 @@ def _add_logging_args(parser): ...@@ -308,7 +308,7 @@ def _add_logging_args(parser):
group.add_argument('--log-params-norm', action='store_true', group.add_argument('--log-params-norm', action='store_true',
help='If set, calculate and log parameters norm.') help='If set, calculate and log parameters norm.')
group.add_argument('--log-zeros', action='store_true', group.add_argument('--log-num-zeros-in-grad', action='store_true',
help='If set, calculate and log the number of zeros in gradient.') help='If set, calculate and log the number of zeros in gradient.')
group.add_argument('--tensorboard-log-interval', type=int, default=1, group.add_argument('--tensorboard-log-interval', type=int, default=1,
help='Report to tensorboard interval.') help='Report to tensorboard interval.')
......
...@@ -84,7 +84,7 @@ def get_megatron_optimizer(model): ...@@ -84,7 +84,7 @@ def get_megatron_optimizer(model):
hysteresis=args.hysteresis) hysteresis=args.hysteresis)
# Megatron optimizer. # Megatron optimizer.
return FP16OptimizerWithFP16Params(optimizer, grad_scaler, return FP16OptimizerWithFP16Params(optimizer, grad_scaler,
args.clip_grad, args.log_zeros) args.clip_grad, args.log_num_zeros_in_grad)
# FP32. # FP32.
return FP32Optimizer(optimizer, args.clip_grad, args.log_zeros) return FP32Optimizer(optimizer, args.clip_grad, args.log_num_zeros_in_grad)
...@@ -139,12 +139,12 @@ class MegatronOptimizer(ABC): ...@@ -139,12 +139,12 @@ class MegatronOptimizer(ABC):
class FP16OptimizerWithFP16Params(MegatronOptimizer): class FP16OptimizerWithFP16Params(MegatronOptimizer):
def __init__(self, optimizer, grad_scaler, clip_grad, log_zeros): def __init__(self, optimizer, grad_scaler, clip_grad, log_num_zeros_in_grad):
super(FP16OptimizerWithFP16Params, self).__init__(optimizer) super(FP16OptimizerWithFP16Params, self).__init__(optimizer)
self.grad_scaler = grad_scaler self.grad_scaler = grad_scaler
self.clip_grad = clip_grad self.clip_grad = clip_grad
self.log_zeros = log_zeros self.log_num_zeros_in_grad = log_num_zeros_in_grad
# Tensor used to determine if a nan/if has happend. # Tensor used to determine if a nan/if has happend.
# Any non-zero value indicates inf/nan. # Any non-zero value indicates inf/nan.
...@@ -329,7 +329,7 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer): ...@@ -329,7 +329,7 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer):
timers('optimizer-clip-main-grad').stop() timers('optimizer-clip-main-grad').stop()
# count the zeros in the grads # count the zeros in the grads
num_zeros = self.count_zeros() if self.log_zeros else None num_zeros_in_grad = self.count_zeros() if self.log_num_zeros_in_grad else None
# Step the optimizer. # Step the optimizer.
self.optimizer.step() self.optimizer.step()
...@@ -340,7 +340,7 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer): ...@@ -340,7 +340,7 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer):
timers('optimizer-copy-main-to-model-params').stop() timers('optimizer-copy-main-to-model-params').stop()
# Successful update. # Successful update.
return True, grad_norm, num_zeros return True, grad_norm, num_zeros_in_grad
def state_dict(self): def state_dict(self):
...@@ -381,11 +381,11 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer): ...@@ -381,11 +381,11 @@ class FP16OptimizerWithFP16Params(MegatronOptimizer):
class FP32Optimizer(MegatronOptimizer): class FP32Optimizer(MegatronOptimizer):
def __init__(self, optimizer, clip_grad, log_zeros): def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad):
super(FP32Optimizer, self).__init__(optimizer) super(FP32Optimizer, self).__init__(optimizer)
self.clip_grad = clip_grad self.clip_grad = clip_grad
self.log_zeros = log_zeros self.log_num_zeros_in_grad = log_num_zeros_in_grad
self._scale = torch.cuda.FloatTensor([1.0]) self._scale = torch.cuda.FloatTensor([1.0])
...@@ -411,13 +411,13 @@ class FP32Optimizer(MegatronOptimizer): ...@@ -411,13 +411,13 @@ class FP32Optimizer(MegatronOptimizer):
grad_norm = self.clip_grad_norm(self.clip_grad) grad_norm = self.clip_grad_norm(self.clip_grad)
# count the zeros in the grads # count the zeros in the grads
num_zeros = self.count_zeros() if self.log_zeros else None num_zeros_in_grad = self.count_zeros() if self.log_num_zeros_in_grad else None
# Update parameters. # Update parameters.
self.optimizer.step() self.optimizer.step()
# No overflow for FP32 optimizer. # No overflow for FP32 optimizer.
return True, grad_norm, num_zeros return True, grad_norm, num_zeros_in_grad
def reload_model_params(self): def reload_model_params(self):
......
...@@ -378,11 +378,7 @@ def train_step(forward_step_func, data_iterator, ...@@ -378,11 +378,7 @@ def train_step(forward_step_func, data_iterator,
# Update parameters. # Update parameters.
timers('optimizer').start() timers('optimizer').start()
<<<<<<< HEAD update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
update_successfull, grad_norm, num_zeros = optimizer.step()
=======
update_successful, grad_norm = optimizer.step()
>>>>>>> main
timers('optimizer').stop() timers('optimizer').stop()
# Update learning rate. # Update learning rate.
...@@ -401,13 +397,13 @@ def train_step(forward_step_func, data_iterator, ...@@ -401,13 +397,13 @@ def train_step(forward_step_func, data_iterator,
for key in losses_reduced[0]: for key in losses_reduced[0]:
losses_reduced_for_key = [x[key] for x in losses_reduced] losses_reduced_for_key = [x[key] for x in losses_reduced]
loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key) loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
return loss_reduced, skipped_iter, grad_norm, num_zeros return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
return {}, skipped_iter, grad_norm, num_zeros return {}, skipped_iter, grad_norm, num_zeros_in_grad
def training_log(loss_dict, total_loss_dict, learning_rate, iteration, def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
loss_scale, report_memory_flag, skipped_iter, loss_scale, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros): grad_norm, params_norm, num_zeros_in_grad):
"""Log training information such as losses, timing, ....""" """Log training information such as losses, timing, ...."""
args = get_args() args = get_args()
timers = get_timers() timers = get_timers()
...@@ -496,9 +492,9 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration, ...@@ -496,9 +492,9 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
writer.add_scalar('grad-norm', grad_norm, iteration) writer.add_scalar('grad-norm', grad_norm, iteration)
writer.add_scalar('grad-norm vs samples', grad_norm, writer.add_scalar('grad-norm vs samples', grad_norm,
args.consumed_train_samples) args.consumed_train_samples)
if num_zeros is not None: if num_zeros_in_grad is not None:
writer.add_scalar('num-zeros', num_zeros, iteration) writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
writer.add_scalar('num-zeros vs samples', num_zeros, writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
args.consumed_train_samples) args.consumed_train_samples)
if params_norm is not None: if params_norm is not None:
writer.add_scalar('params-norm', params_norm, iteration) writer.add_scalar('params-norm', params_norm, iteration)
...@@ -534,8 +530,8 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration, ...@@ -534,8 +530,8 @@ def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
log_string += ' loss scale: {:.1f} |'.format(loss_scale) log_string += ' loss scale: {:.1f} |'.format(loss_scale)
if grad_norm is not None: if grad_norm is not None:
log_string += ' grad norm: {:.3f} |'.format(grad_norm) log_string += ' grad norm: {:.3f} |'.format(grad_norm)
if num_zeros is not None: if num_zeros_in_grad is not None:
log_string += ' num zeros: {:.1f} |'.format(num_zeros) log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
if params_norm is not None: if params_norm is not None:
log_string += ' params norm: {:.3f} |'.format(params_norm) log_string += ' params norm: {:.3f} |'.format(params_norm)
log_string += ' number of skipped iterations: {:3d} |'.format( log_string += ' number of skipped iterations: {:3d} |'.format(
...@@ -591,11 +587,12 @@ def train(forward_step_func, model, optimizer, lr_scheduler, ...@@ -591,11 +587,12 @@ def train(forward_step_func, model, optimizer, lr_scheduler,
report_memory_flag = True report_memory_flag = True
while iteration < args.train_iters: while iteration < args.train_iters:
update_num_microbatches(args.consumed_train_samples) update_num_microbatches(args.consumed_train_samples)
loss_dict, skipped_iter, grad_norm, num_zeros = train_step(forward_step_func, loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_data_iterator, train_step(forward_step_func,
model, train_data_iterator,
optimizer, model,
lr_scheduler) optimizer,
lr_scheduler)
iteration += 1 iteration += 1
args.consumed_train_samples += mpu.get_data_parallel_world_size() * \ args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
args.micro_batch_size * \ args.micro_batch_size * \
...@@ -610,7 +607,7 @@ def train(forward_step_func, model, optimizer, lr_scheduler, ...@@ -610,7 +607,7 @@ def train(forward_step_func, model, optimizer, lr_scheduler,
optimizer.param_groups[0]['lr'], optimizer.param_groups[0]['lr'],
iteration, loss_scale, iteration, loss_scale,
report_memory_flag, skipped_iter, report_memory_flag, skipped_iter,
grad_norm, params_norm, num_zeros) grad_norm, params_norm, num_zeros_in_grad)
# Autoresume # Autoresume
if args.adlr_autoresume and \ if args.adlr_autoresume and \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment