arguments.py 42.5 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vit_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
84
85
86
87
88
89
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
90

91
92
93
94
95
96
97
98
99
100
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
101
102
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
103
104
105
106
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
107
    del args.checkpoint_activations
108

Jared Casper's avatar
Jared Casper committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
123
124
125
126
127
128
129
130
131
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
132
    if args.num_layers_per_virtual_pipeline_stage is not None:
133
134
135
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
136
137
138
139
140
141
142
143
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
144

145
146
147
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
148
        assert not args.bf16
149
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
151
152
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153
154
155
156
157
158
159
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160

161
162
163
164
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

165
166
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
167
168
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
169
        assert args.use_contiguous_buffers_in_local_ddp
170

mshoeybi's avatar
mshoeybi committed
171
172
173
174
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

175
176
177
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

178
179
180
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
181

182
183
184
185
186
187
188
189
190
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
191
            'expected iteration-based learning rate warmup'
192
193
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
194
        if args.lr_warmup_fraction is not None:
195
            assert args.lr_warmup_iters == 0, \
196
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
197
198
199
200
201
202
203
204
205
206
207

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
208
        if args.lr_warmup_fraction is not None:
209
            assert args.lr_warmup_samples == 0, \
210
211
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
212

213
    # Check required arguments.
Mohammad's avatar
Mohammad committed
214
215
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
216
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
217
        _check_arg_is_not_none(args, req_arg)
218

Mohammad's avatar
Mohammad committed
219
    # Checks.
220
221
222
223
224
225
226
227
228
229
230
231
232
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
233

Mohammad's avatar
Mohammad committed
234
235
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
236
237
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
238
239
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
240
241
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
242
243
244
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
245
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
246
247
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248

Sangkug Lym's avatar
Sangkug Lym committed
249
250
251
252
253
254
255
256
257
258
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

259
260
261
262
263
264
265
266
267
268
269
270
271
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
        assert args.activations_checkpoint_method is not None, \
            'for distributed checkpoint activations to work you '\
            'need to use a activation-checkpoint method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed checkpoint activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Mohammad's avatar
Mohammad committed
272
273
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
274
275


Mohammad's avatar
Mohammad committed
276
277
278
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
279
280
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
281
282
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
283
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
284
285
286
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
287
288
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
289
290


291
292
293
294
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
295
296
297
298
299
300
301
302
303
304
305
306
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
307
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
308
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
309

310
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
311
                       help='Number of transformer layers.')
312
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
313
                       help='Tansformer hidden size.')
314
    group.add_argument('--ffn-hidden-size', type=int, default=None,
315
316
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
317
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
318
                       help='Number of transformer attention heads.')
319
    group.add_argument('--kv-channels', type=int, default=None,
320
321
322
323
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
324
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
325
326
327
328
329
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
330
331
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
332
333
334
335
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
336
337
338
339
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
340
    group.add_argument('--onnx-safe', type=bool, required=False,
341
342
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
343
344
345
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
346

Mohammad's avatar
Mohammad committed
347
348
349
    return parser


350
351
352
353
354
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
355
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
356
                       help='If set, calculate and log the number of zeros in gradient.')
357
358
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
359
360
361
362
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
379
380
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
381
                       help='Enable memory logging to tensorboard.')
382
383
384
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
385
386
387
388

    return parser


Mohammad's avatar
Mohammad committed
389
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
390
391
392
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
393
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
394
395
396
397
398
399
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
400
    group.add_argument('--adam-beta1', type=float, default=0.9,
401
402
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
403
    group.add_argument('--adam-beta2', type=float, default=0.999,
404
405
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
406
    group.add_argument('--adam-eps', type=float, default=1e-08,
407
                       help='Term added to the denominator to improve'
408
                       'numerical stability')
409
410
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
411
412
413

    return parser

Mohammad's avatar
Mohammad committed
414
415

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
416
417
    group = parser.add_argument_group(title='training')

418
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
419
420
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
421
                       'parallel size times number of micro batches.')
422
423
424
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
425
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
426
427
428
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
429
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
430
431
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
432
433
434
435
436
437
438
439
440
441
442
443
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
444
445
446
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
447
448
449
450
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
451
452
453
454
455
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
456
457
458
459
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
460
461
462
463
464
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
465
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
466
                       help='Total number of iterations to train over all '
467
468
469
470
471
472
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
473
474
475
476
477
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
478
479
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
480
481
482
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
483
484
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
485
    group.add_argument('--no-masked-softmax-fusion',
486
487
488
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
489
                       dest='masked_softmax_fusion')
490
491
492
493
494
495
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
496
497
498
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
499
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
500
501
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
502
503
504
505
506
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_true',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.')
Sangkug Lym's avatar
Sangkug Lym committed
507
508
509
510
511
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Mohammad's avatar
Mohammad committed
512
513
514
    return parser


Mohammad's avatar
Mohammad committed
515
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
516
517
518
519
520
521
522
523
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
524
525
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
526

Mohammad's avatar
Mohammad committed
527
528
529
    return parser


Mohammad's avatar
Mohammad committed
530
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
531
532
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
533
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
534
535
536
537
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
538
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
539
540
541
542
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
543
544
545
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
546
547
548
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
549
550
551
552
553
554
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
555
    group.add_argument('--warmup', type=int, default=None,
556
                       help='Old lr warmup argument, do not use. Use one of the'
557
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
576
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
577
578
579
580
581
582
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
583
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
584
                       help='Do not save current optimizer.')
585
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
586
587
588
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
589
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
590
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
591
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
592
593
594
595
596
597
598
599
600
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
601
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
602
603
604
605
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
606
607
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
608
609
610
611
612
613
614
615
616
617
618
619
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
620
621
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
622
623
624
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
625
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
626
627
628
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
629
630
631
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
632
633
634
635
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
636
637
638
    return parser


Mohammad's avatar
Mohammad committed
639
def _add_distributed_args(parser):
640
641
    group = parser.add_argument_group(title='distributed')

642
643
644
645
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
646
647
648
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
649
650
651
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
652
653
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
654
655
656
657
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
658
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
659
660
                       help='which DistributedDataParallel implementation '
                       'to use.')
661
662
663
664
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
665
666
667
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
668
669
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
670
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
671
672
673
674
675
676
677
678
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
679
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
680
681
682
683
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
684
685
686
    group.add_argument('--deallocate-pipeline-outputs', action='store_true',
                       default=False, help='If set, pipeline output tensors '
                       'are deallocated during the forward pass.')
Mohammad's avatar
Mohammad committed
687
688
689
    return parser


Mohammad's avatar
Mohammad committed
690
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
691
692
693
694
695
696
697
698
699
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
700
701
702
    return parser


Mohammad's avatar
Mohammad committed
703
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
704
705
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
706
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
707
708
709
710
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
711
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
712
713
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
714
715
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
716
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
717
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
718
719
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
720
721
722
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
723
    group.add_argument('--seq-length', type=int, default=None,
724
                       help='Maximum sequence length to process.')
725
    group.add_argument('--encoder-seq-length', type=int, default=None,
726
727
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
728
729
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
730
731
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
732
                        ' for retriever')
733
734
735
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
736
737
738
739
740
741
742
743
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
744
745
746
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
747
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
748
749
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
750
751
752
753
754
755
756
757
758
759
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
760

Mohammad's avatar
Mohammad committed
761
762
    return parser

Raul Puri's avatar
Raul Puri committed
763

Mohammad's avatar
Mohammad committed
764
765
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
766

Mohammad's avatar
Mohammad committed
767
768
769
770
771
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
772

Mohammad's avatar
Mohammad committed
773
    return parser
Neel Kant's avatar
Neel Kant committed
774
775


Mostofa Patwary's avatar
Mostofa Patwary committed
776
777
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
778
779
780

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
781
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
782
                        'REALM (paper default: 128)')
783
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
784
785
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
786
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
787
788
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
789
790
791
792
793

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
794
795
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
796
797
798
799
800

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
801
802
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
803
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
804
                       help='Whether to use one sentence documents in ICT')
805
806
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
807

808
    # training
809
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
810
811
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
812
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
813
814
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
815

Neel Kant's avatar
Neel Kant committed
816
    # faiss index
Neel Kant's avatar
Neel Kant committed
817
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
818
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
819
820
821
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
822
823
824

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
825
826
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
827
    group.add_argument('--indexer-log-interval', type=int, default=1000,
828
829
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
830
    return parser
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser