arguments.py 39.2 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vit_args(parser)
43
    parser = _add_logging_args(parser)
Mohammad's avatar
Mohammad committed
44
45
46
47

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
48

Mohammad's avatar
Mohammad committed
49
    # Parse.
50
51
52
53
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
54

Mohammad's avatar
Mohammad committed
55
56
57
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
58
    # Tensor model parallel size.
59
60
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
61
62
63
64
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
65
66
67
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
68
    # Checks.
69
70
71
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
72
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
73
74
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
75
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
76
    if args.rank == 0:
mohammad's avatar
mohammad committed
77
78
79
80
81
82
83
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

84
85
86
87
88
89
90
91
92
93
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
94
95
96
97
98
99
    if args.checkpoint_activations:
        print('--checkpoint-activations is no longer valid, '
              'use --activation-checkpoint-method instead. '
              'Defaulting to activation-checkpoint-method=uniform.')
        args.activations_checkpoint_method = 'uniform'
    del args.checkpoint_activations
100

Jared Casper's avatar
Jared Casper committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
115
116
117
118
119
120
121
122
123
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
124
    if args.num_layers_per_virtual_pipeline_stage is not None:
125
126
127
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
128
129
130
131
132
133
134
135
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
136

137
138
139
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140
        assert not args.bf16
141
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142
143
144
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145
146
147
148
149
150
151
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
152

153
154
155
156
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
157
    # If we do accumulation and all-reduces in fp32, we need to have
158
    # local DDP and we should set the use-contiguous-buffers-in-ddp.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159
160
161
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
        args.use_contiguous_buffers_in_ddp = True
162

163
164
165
166
167
    # If we use a contiguous buffer to hold main grads, we need to have
    # local DDP.
    if args.use_contiguous_buffers_in_ddp:
        assert args.DDP_impl == 'local'

168
169
170
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

171
172
173
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
174

175
176
177
178
179
180
181
182
183
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
184
            'expected iteration-based learning rate warmup'
185
186
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
187
        if args.lr_warmup_fraction is not None:
188
            assert args.lr_warmup_iters == 0, \
189
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
190
191
192
193
194
195
196
197
198
199
200

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
201
        if args.lr_warmup_fraction is not None:
202
            assert args.lr_warmup_samples == 0, \
203
204
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
205

206
    # Check required arguments.
Mohammad's avatar
Mohammad committed
207
208
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
209
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
210
        _check_arg_is_not_none(args, req_arg)
211

Mohammad's avatar
Mohammad committed
212
    # Checks.
213
214
215
216
217
218
219
220
221
222
223
224
225
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
226

Mohammad's avatar
Mohammad committed
227
228
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
229
230
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
231
232
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
233
234
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
235
236
237
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
238
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
239
240
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
mohammad's avatar
mohammad committed
241
242
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
243
        assert args.activations_checkpoint_method is not None, \
mohammad's avatar
mohammad committed
244
            'for distribute-checkpointed-activations to work you '\
245
            'need to use a valid checkpoint-activation method (\'uniform\' or \'block\')'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
246

Mohammad's avatar
Mohammad committed
247
248
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
249
250


Mohammad's avatar
Mohammad committed
251
252
253
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
254
255
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
256
257
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
258
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
259
260
261
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
262
263
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
264
265


266
267
268
269
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
270
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
271
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
272

273
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
274
                       help='Number of transformer layers.')
275
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
276
                       help='Tansformer hidden size.')
277
    group.add_argument('--ffn-hidden-size', type=int, default=None,
278
279
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
280
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
281
                       help='Number of transformer attention heads.')
282
    group.add_argument('--kv-channels', type=int, default=None,
283
284
285
286
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
287
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
288
289
290
291
292
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
293
294
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
295
296
297
298
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
299
300
301
302
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
303
    group.add_argument('--onnx-safe', type=bool, required=False,
304
305
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
306
307
308
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
309

Mohammad's avatar
Mohammad committed
310
311
312
    return parser


313
314
315
316
317
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
318
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
319
                       help='If set, calculate and log the number of zeros in gradient.')
320
321
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
322
323
324
325
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
342
343
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
344
                       help='Enable memory logging to tensorboard.')
345
346
347
348

    return parser


Mohammad's avatar
Mohammad committed
349
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
350
351
352
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
353
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
354
355
356
357
358
359
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
360
    group.add_argument('--adam-beta1', type=float, default=0.9,
361
362
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
363
    group.add_argument('--adam-beta2', type=float, default=0.999,
364
365
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
366
    group.add_argument('--adam-eps', type=float, default=1e-08,
367
                       help='Term added to the denominator to improve'
368
                       'numerical stability')
369
370
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
371
372
373

    return parser

Mohammad's avatar
Mohammad committed
374
375

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
376
377
    group = parser.add_argument_group(title='training')

378
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
379
380
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
381
                       'parallel size times number of micro batches.')
382
383
384
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
385
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
386
387
388
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
389
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
390
391
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
392
393
394
395
396
397
398
399
400
401
402
403
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
404
405
406
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
407
408
409
410
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
411
412
413
414
415
416
417
418
419
420
421
422
423
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
                       '2) block: checkpoint the input activation of only a set '
                       'number of individual Transformer layers and skip the rest, '
                       'default) checkpoint the inputs of every Transformer layer')
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
424
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
425
                       help='Total number of iterations to train over all '
426
427
428
429
430
431
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
432
433
434
435
436
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
437
438
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
439
440
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
441
    group.add_argument('--no-masked-softmax-fusion',
442
443
444
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
445
                       dest='masked_softmax_fusion')
446
447
448
449
450
451
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
452
453
454
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
455
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
456
457
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
Mohammad's avatar
Mohammad committed
458
459
460
    return parser


Mohammad's avatar
Mohammad committed
461
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
462
463
464
465
466
467
468
469
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
470
471
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
472

Mohammad's avatar
Mohammad committed
473
474
475
    return parser


Mohammad's avatar
Mohammad committed
476
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
477
478
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
479
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
480
481
482
483
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
484
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
485
486
487
488
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
489
490
491
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
492
493
494
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
495
496
497
498
499
500
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
501
    group.add_argument('--warmup', type=int, default=None,
502
                       help='Old lr warmup argument, do not use. Use one of the'
503
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
522
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
523
524
525
526
527
528
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
529
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
530
                       help='Do not save current optimizer.')
531
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
532
533
534
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
535
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
536
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
537
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
538
539
540
541
542
543
544
545
546
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
547
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
548
549
550
551
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
552
553
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
554
555
556
557
558
559
560
561
562
563
564
565
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
566
567
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
568
569
570
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
571
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
572
573
574
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
575
576
577
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
578
579
580
581
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
582
583
584
    return parser


Mohammad's avatar
Mohammad committed
585
def _add_distributed_args(parser):
586
587
    group = parser.add_argument_group(title='distributed')

588
589
590
591
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
592
593
594
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
595
596
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
597
598
599
600
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
601
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
602
603
                       help='which DistributedDataParallel implementation '
                       'to use.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
604
605
606
    group.add_argument('--use-contiguous-buffers-in-ddp', action='store_true',
                       help='If set, use contiguous buffer in DDP. Note that '
                       'this option only works woth local DDP.' )
607
608
609
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
610
611
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
612
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
613
614
615
616
617
618
619
620
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
621
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
622
623
624
625
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
Mohammad's avatar
Mohammad committed
626
627
628
    return parser


Mohammad's avatar
Mohammad committed
629
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
630
631
632
633
634
635
636
637
638
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
639
640
641
    return parser


Mohammad's avatar
Mohammad committed
642
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
643
644
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
645
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
646
647
648
649
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
650
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
651
652
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
653
654
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
655
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
656
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
657
658
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
659
660
661
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
662
    group.add_argument('--seq-length', type=int, default=None,
663
                       help='Maximum sequence length to process.')
664
    group.add_argument('--encoder-seq-length', type=int, default=None,
665
666
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
667
668
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
669
670
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
671
                        ' for retriever')
672
673
674
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
675
676
677
678
679
680
681
682
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
683
684
685
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
686
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
687
688
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
689
690
691
692
693
694
695
696
697
698
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
699

Mohammad's avatar
Mohammad committed
700
701
    return parser

Raul Puri's avatar
Raul Puri committed
702

Mohammad's avatar
Mohammad committed
703
704
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
705

Mohammad's avatar
Mohammad committed
706
707
708
709
710
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
711

Mohammad's avatar
Mohammad committed
712
    return parser
Neel Kant's avatar
Neel Kant committed
713
714


Mostofa Patwary's avatar
Mostofa Patwary committed
715
716
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
717
718
719

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
720
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
721
                        'REALM (paper default: 128)')
722
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
723
724
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
725
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
726
727
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
728
729
730
731
732

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
733
734
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
735
736
737
738
739

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
740
741
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
742
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
743
                       help='Whether to use one sentence documents in ICT')
744
745
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
746

747
    # training
748
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
749
750
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
751
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
752
753
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
754

Neel Kant's avatar
Neel Kant committed
755
    # faiss index
Neel Kant's avatar
Neel Kant committed
756
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
757
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
758
759
760
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
761
762
763

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
764
765
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
766
    group.add_argument('--indexer-log-interval', type=int, default=1000,
767
768
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
769
    return parser
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser