arguments.py 23.2 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
57
58
59
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
62
63
64
65
    if args.pipeline_model_parallel_size > 1:
        if "ring_exchange" not in dir(torch.distributed):
            raise Exception('PyTorch with torch.distributed.ring_exchange needed '
                            'to run pipeline MP!')
66
67
    if args.num_microbatches_in_minibatch is None:
        args.num_microbatches_in_minibatch = 1
Mohammad's avatar
Mohammad committed
68
    if args.rank == 0:
69
70
        print('using world size: {}, tensor-model-parallel size: {}, pipeline-model-parallel size: {} '.format(
            args.world_size, args.tensor_model_parallel_size, args.pipeline_model_parallel_size))
Mohammad's avatar
Mohammad committed
71

Mohammad's avatar
Mohammad committed
72
73
74
75
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
76

77
78
79
80
81
82
83
84
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

85
86
87
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
88

Mohammad's avatar
Mohammad committed
89
90
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
91
92
93
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
94
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
95
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
96
97
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
98
99
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
100
101
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
102

103
    # Check required arguments.
Mohammad's avatar
Mohammad committed
104
105
106
107
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
108

Mohammad's avatar
Mohammad committed
109
110
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
111
112
113
114
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
115
116
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
117
118
119
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
120
121
122
123
124
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
125

126
127
128
129
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

130
131
132
133
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
134
135
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
136
137


Mohammad's avatar
Mohammad committed
138
139
140
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
141
142
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
143
144
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
145
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
146
147
148
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
149
150
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
151
152


153
154
155
156
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
157
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
158
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
159

160
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
161
                       help='Number of transformer layers.')
162
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
163
                       help='Tansformer hidden size.')
164
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
165
                       help='Number of transformer attention heads.')
166
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
167
168
169
170
171
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
172
173
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
174
175
176
177
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
178
179
180
181
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
182
    group.add_argument('--onnx-safe', type=bool, required=False,
183
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
184

Mohammad's avatar
Mohammad committed
185
186
187
    return parser


Mohammad's avatar
Mohammad committed
188
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
189
190
191
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
192
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
193
194
195
196
197
198
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
199
200
201
202
203
204
205
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
206
                       help='Term added to the denominator to improve'
207
                       'numerical stability')
Mohammad's avatar
Mohammad committed
208
209
210

    return parser

Mohammad's avatar
Mohammad committed
211
212

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
213
214
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
215
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
216
217
218
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
219
220
    group.add_argument('--num-microbatches-in-minibatch', type=int, default=None,
                       help='Number of microbatches in minibatch')
Mohammad's avatar
Mohammad committed
221
222
223
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
224
225
226
227
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
228
229
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
230
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
231
232
233
234
235
236
237
238
239
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
240
241
242
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
243
244
245
246
247
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
248
249
250
251
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
252
253
254
255

    return parser


Mohammad's avatar
Mohammad committed
256
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
257
258
259
260
261
262
263
264
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
265

Mohammad's avatar
Mohammad committed
266
267
268
    return parser


Mohammad's avatar
Mohammad committed
269
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
270
271
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
272
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
273
274
275
276
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
277
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
303
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
328
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
329
330
331
332
333
334
335
336
337
338
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
339
340
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
341
342
343
344
345
346
347
348
349
350
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
351
352
353
354
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
355
356
357
358

    return parser


Mohammad's avatar
Mohammad committed
359
def _add_distributed_args(parser):
360
361
    group = parser.add_argument_group(title='distributed')

362
363
364
365
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
Mohammad's avatar
Mohammad committed
366
367
368
369
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
370
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
371
372
373
374
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
375
376
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
377
378
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
379
                       'This is for external DDP manager.' )
380
381
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
382
383
384
    return parser


Mohammad's avatar
Mohammad committed
385
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
386
387
388
389
390
391
392
393
394
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
395
396
397
    return parser


Mohammad's avatar
Mohammad committed
398
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
399
400
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
401
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
402
403
404
405
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
406
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
407
408
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
409
410
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
411
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
412
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
413
414
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
415
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
416
417
418
419
420
421
422
423
424
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
425
426
427
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
428
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
429
430
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
431
432
433
434
435
436
437
438
439
440
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
441

Mohammad's avatar
Mohammad committed
442
443
    return parser

Raul Puri's avatar
Raul Puri committed
444

Mohammad's avatar
Mohammad committed
445
446
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
447

Mohammad's avatar
Mohammad committed
448
449
450
451
452
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
453

Mohammad's avatar
Mohammad committed
454
    return parser
Neel Kant's avatar
Neel Kant committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
475
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
476
477
                       help='Whether to use one sentence documents in ICT')

478
479
480
481
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
482
483
484
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
485
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
486
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
487
488
489
490
491
492

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
493
494
    return parser