arguments.py 19.1 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20
21

import argparse
import os


22
23
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
24
    """Parse all arguments."""
25
26
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
27

Mohammad's avatar
Mohammad committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
44

Mohammad's avatar
Mohammad committed
45
    # Parse.
46
47
48
49
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
50

Mohammad's avatar
Mohammad committed
51
52
53
54
55
56
57
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    args.model_parallel_size = min(args.model_parallel_size, args.world_size)
    if args.rank == 0:
        print('using world size: {} and model-parallel size: {} '.format(
            args.world_size, args.model_parallel_size))
Mohammad's avatar
Mohammad committed
58

Mohammad's avatar
Mohammad committed
59
60
61
62
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
63

Mohammad's avatar
Mohammad committed
64
65
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
66
67
68
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
69
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
70
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
71
72
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
73
74
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
75
76
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
77

78
    # Check required arguments.
Mohammad's avatar
Mohammad committed
79
80
81
82
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
83

Mohammad's avatar
Mohammad committed
84
85
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
86
87
88
89
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
90
91
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
92
93
94
95
96
97
98
99
    # Parameters sharing does not work with torch DDP.
    if (args.num_unique_layers is not None) and (args.num_layers is not None):
        assert args.num_unique_layers <= args.num_layers
        assert args.num_layers % args.num_unique_layers == 0, \
            'num-layers should be divisible by num-unique-layers.'
        if args.num_unique_layers < args.num_layers:
            assert args.DDP_impl == 'local', \
                'torch-DDP does not work with parameters sharing.'
mohammad's avatar
mohammad committed
100
101
102
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
Mohammad's avatar
Mohammad committed
103

Mohammad's avatar
Mohammad committed
104
105
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
106
107


Mohammad's avatar
Mohammad committed
108
109
110
111
112
113
114
115
116
117
118
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
        print('-------------------- arguments --------------------', flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (32 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print('---------------- end of arguments ----------------', flush=True)
Mohammad's avatar
Mohammad committed
119
120


121
122
123
124
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
125
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
126
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
127

128
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
129
                       help='Number of transformer layers.')
Mohammad's avatar
Mohammad committed
130
131
132
133
    group.add_argument('--num-unique-layers', type=int, default=None,
                       help='Number of unique transformer layers. '
                       '`num-layers` should be divisible by this value.')
    group.add_argument('--param-sharing-style', default='grouped',
mohammad's avatar
mohammad committed
134
                       choices=['grouped', 'spaced'],
Mohammad's avatar
Mohammad committed
135
136
137
138
139
                       help='Ordering of the shared parameters. For example, '
                       'for a `num-layers`=4 and `--num-unique-layers`=2, '
                       'we will have the following ordering for two unique '
                       'layers 1 and 2: '
                       '    grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].')
140
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
141
                       help='Tansformer hidden size.')
142
143
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')
144
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
145
                       help='Number of transformer attention heads.')
146
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
147
148
149
150
151
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
152
153
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
154
155
156
157
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
158
159
160
161
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
Mohammad's avatar
Mohammad committed
162

Mohammad's avatar
Mohammad committed
163
164
165
    return parser


Mohammad's avatar
Mohammad committed
166
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
167
168
169
170
171
172
173
174
175
176
177
178
179
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='Post attention dropout ptobability.')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')

    return parser

Mohammad's avatar
Mohammad committed
180
181

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
182
183
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
184
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
185
186
187
188
189
190
191
192
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
193
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
194
195
196
197
198
199
200
201
202
203
204
205
206
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')

    return parser


Mohammad's avatar
Mohammad committed
207
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
208
209
210
211
212
213
214
215
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
216

Mohammad's avatar
Mohammad committed
217
218
219
    return parser


Mohammad's avatar
Mohammad committed
220
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
221
222
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
223
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
254
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
255
256
257
258
259
260
261
262
263
264
265
266
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Neel Kant's avatar
Neel Kant committed
267
268
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
269
    group.add_argument('--bert-load', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
270
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')
Mohammad's avatar
Mohammad committed
271
272
273
274
275
276
277
278
279
280
281
282
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
283
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
284
285
286
287
288
289
290
291
292
293
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
294
295
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
296
297
298
299
300
301
302
303
304
305
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
306
307
308
309
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
310
311
312
313

    return parser


Mohammad's avatar
Mohammad committed
314
def _add_distributed_args(parser):
Mohammad's avatar
Mohammad committed
315
316
    group = parser.add_argument_group(title='mixed precision')

Mohammad's avatar
Mohammad committed
317
318
    group.add_argument('--model-parallel-size', type=int, default=1,
                       help='Size of the model parallel.')
Mohammad's avatar
Mohammad committed
319
320
321
322
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
323
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
324
325
326
327
328
329
330
331
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')

    return parser


Mohammad's avatar
Mohammad committed
332
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
333
334
335
336
337
338
339
340
341
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
342
343
344
    return parser


Mohammad's avatar
Mohammad committed
345
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
346
347
    group = parser.add_argument_group(title='data and dataloader')

Mohammad's avatar
Mohammad committed
348
    group.add_argument('--data-path', type=str, default=None,
Mohammad's avatar
Mohammad committed
349
                       help='Path to combined dataset to split.')
Neel Kant's avatar
Neel Kant committed
350
351
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
Mohammad's avatar
Mohammad committed
352
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
353
354
355
356
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90% of data for training, 5% for '
                       'validation and 5% for test.')
Mohammad's avatar
Mohammad committed
357
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
358
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
359
360
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
361
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
362
363
364
365
366
367
368
369
370
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
371
372
373
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
374
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
375
376
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
377
378
379
380
381
382
383
384
385
386
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Neel Kant's avatar
Neel Kant committed
387
388
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
389
390
    group.add_argument('--ict-one-sent', action='store_true',
                       help='Whether to use one sentence documents in ICT')
Mohammad's avatar
Mohammad committed
391

Mohammad's avatar
Mohammad committed
392
393
    return parser

Raul Puri's avatar
Raul Puri committed
394

Mohammad's avatar
Mohammad committed
395
396
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
397

Mohammad's avatar
Mohammad committed
398
399
400
401
402
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
403

Mohammad's avatar
Mohammad committed
404
    return parser