arguments.py 57.3 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5
6
7

import argparse
import os

8
import torch
Raul Puri's avatar
Raul Puri committed
9

10
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
11
    """Parse all arguments."""
12
13
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
14

Mohammad's avatar
Mohammad committed
15
16
17
18
19
20
21
22
23
24
25
26
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
27
    parser = _add_biencoder_args(parser)
28
    parser = _add_vision_args(parser)
29
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
30
    parser = _add_inference_args(parser)
31
    parser = _add_transformer_engine_args(parser)
Mohammad's avatar
Mohammad committed
32
33
34
35

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
36

Mohammad's avatar
Mohammad committed
37
    # Parse.
38
39
40
41
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
42

43
44
45
46
    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
        
47
48
49
    return args

def validate_args(args, defaults={}):
mohammad's avatar
mohammad committed
50
    # Tensor model parallel size.
51
52
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
53
54
55
56
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
57
58
59
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
60
61
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
62
        if args.standalone_embedding_stage else
63
64
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
65
    # Checks.
66
67
68
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
69
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
70
71
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
72
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
73
    if args.rank == 0:
mohammad's avatar
mohammad committed
74
75
76
77
78
79
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
80
81
82
83
84
85
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
86

87
88
89
90
91
92
93
94
95
96
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
97

98
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
99
100
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
101
102
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
103
104
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
105
    del args.checkpoint_activations
106

Vijay Korthikanti's avatar
Vijay Korthikanti committed
107
108
109
110
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
125
126
127
128
129
130
131
132
133
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
134
    if args.num_layers_per_virtual_pipeline_stage is not None:
135
136
137
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
138
139
140
141
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
142
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
143
144
145
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
146

147
148
149
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
        assert not args.bf16
151
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
152
153
154
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155
156
157
158
159
160
161
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162

163
164
165
166
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

167
168
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169
170
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
171
        assert args.use_contiguous_buffers_in_local_ddp
172

173
174
175
176
177
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
178

mshoeybi's avatar
mshoeybi committed
179
180
181
182
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

183
184
185
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

186
187
188
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
189

190
191
192
193
194
195
196
    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    args.variable_seq_lengths = False

197
198
199
200
201
202
203
204
205
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
206
            'expected iteration-based learning rate warmup'
207
208
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
209
        if args.lr_warmup_fraction is not None:
210
            assert args.lr_warmup_iters == 0, \
211
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
212
213
214
215
216
217
218
219
220
221
222

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
223
        if args.lr_warmup_fraction is not None:
224
            assert args.lr_warmup_samples == 0, \
225
226
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
227

228
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
229
230
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
231
232
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
233
234
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
235
236
        args.num_layers = args.encoder_num_layers

237
    # Check required arguments.
Mohammad's avatar
Mohammad committed
238
239
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
240
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
241
        _check_arg_is_not_none(args, req_arg)
242

Mohammad's avatar
Mohammad committed
243
    # Checks.
244
245
246
247
248
249
250
251
252
253
254
255
256
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
257

Mohammad's avatar
Mohammad committed
258
259
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
260
261
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
262
263
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
264
265
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
266
267
268
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
269
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270
271
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
272

Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
274
275
276
277
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
278
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
279
280
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
281

Sangkug Lym's avatar
Sangkug Lym committed
282
283
284
285
286
287
288
289
290
291
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
292
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
293
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
294
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
295
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
296
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
297
298
299
300
301
302
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
303
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
304
            'distributed recompute activations are supported for pytorch ' \
305
306
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
307

308
309
310
311
312
313
314
315
316
317
318
319
    # Tranformer-Engine/FP8 related checking
    if args.fp8_e4m3 or args.fp8_hybrid:
        assert args.transformer_impl == 'transformer_engine', \
            'transformer-engine required for fp8 training and inference'

    assert not (args.fp8_e4m3 and args.fp8_hybrid), \
        'cannot train with both fp8 e4m3 and hybrid formatting'

    if args.fp16:
        assert args.transformer_impl == 'local', \
            'transformer-engine not yet approved for fp16 training and inference'

Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
321
322
323
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
324
325
326
327
328
329
330

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
333
334
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
335

336
337
338
339
340
341
342
343
344
345
346
347

    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")


Mohammad's avatar
Mohammad committed
348
349
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
350
351


Mohammad's avatar
Mohammad committed
352
353
354
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
355
356
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
357
358
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
359
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
360
361
362
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
363
364
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
365
366


367
368
369
370
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def _add_transformer_engine_args(parser):
    group = parser.add_argument_group(title='Transformer-Engine')

    group.add_argument('--fp8-e4m3', action='store_true',
                        help='E4M3 TransformerLayer', dest='fp8_e4m3')
    group.add_argument('--fp8-hybrid', action='store_true',
                        help='Hybrid FP8 TransformerLayer', dest='fp8_hybrid')
    group.add_argument('--no-fp8-wgrad', action='store_false',
                        help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad')
    group.add_argument('--fp8-margin', type=int, default=0,
                        help='Scaling margin for fp8', dest='fp8_margin')
    group.add_argument('--fp8-interval', type=int, default=1,
                        help='Scaling update interval for fp8', dest='fp8_interval')
    group.add_argument('--transformer-impl', default='local',
                       choices=['local', 'transformer_engine'],
                       help='Which Transformer implementation to use.',
                       dest='transformer_impl')
    group.add_argument('--fp8-amax-history-len', type=int, default=1,
                        help='Number of steps for which amax history is recorded per tensor',
                        dest='fp8_amax_history_len')
    group.add_argument('--fp8-amax-compute-algo', default='most_recent',
                       choices=['most_recent', 'max'],
                       help='Algorithm for computing amax from history',
                       dest='fp8_amax_compute_algo')

    return parser

mshoeybi's avatar
mshoeybi committed
398
399
400
401
402
403
404
405
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
406
407
408
409
410
411
    
    group.add_argument('--max-tokens-to-oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
mshoeybi's avatar
mshoeybi committed
412
413
414
    return parser

    
Mohammad's avatar
Mohammad committed
415
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
416
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
417

418
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
419
                       help='Number of transformer layers.')
420
421
422
423
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
424
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
425
                       help='Tansformer hidden size.')
426
    group.add_argument('--ffn-hidden-size', type=int, default=None,
427
428
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
429
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
430
                       help='Number of transformer attention heads.')
431
    group.add_argument('--kv-channels', type=int, default=None,
432
433
434
435
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
436
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
437
438
439
440
441
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
442
443
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
444
445
446
447
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
448
449
450
451
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
452
    group.add_argument('--onnx-safe', type=bool, required=False,
453
454
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
455
456
457
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
458
459
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
460
461
462
    return parser


463
464
465
466
467
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
468
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
469
                       help='If set, calculate and log the number of zeros in gradient.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
496
497
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
498
499
500
501
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
518
519
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
520
                       help='Enable memory logging to tensorboard.')
521
522
523
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
524
525
526
527

    return parser


Mohammad's avatar
Mohammad committed
528
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
529
530
531
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
532
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
533
534
535
536
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
537
    group.add_argument('--start-weight-decay', type=float,
538
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
539
    group.add_argument('--end-weight-decay', type=float,
540
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
541
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
542
543
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
544
545
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
546
    group.add_argument('--adam-beta1', type=float, default=0.9,
547
548
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
549
    group.add_argument('--adam-beta2', type=float, default=0.999,
550
551
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
552
    group.add_argument('--adam-eps', type=float, default=1e-08,
553
                       help='Term added to the denominator to improve'
554
                       'numerical stability')
555
556
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
557
558
559

    return parser

Mohammad's avatar
Mohammad committed
560
561

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
562
563
    group = parser.add_argument_group(title='training')

564
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
565
566
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
567
                       'parallel size times number of micro batches.')
568
569
570
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
571
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
572
573
574
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
575
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
576
577
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
578
579
580
581
582
583
584
585
586
587
588
589
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
590
591
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
592
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
593
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
594
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
595
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
596
597
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
598
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
599
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
600
                       'layer is recomputed.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
601
    group.add_argument('--distribute-saved-activations',
602
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
603
                       help='If set, distribute recomputed activations '
604
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
605
    group.add_argument('--recompute-method', type=str, default=None,
606
607
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
608
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
609
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
610
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
611
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
612
613
614
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
615
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
616
                       'uniformly divided recompute unit, '
617
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
618
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
619
620
621
622
623

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
624
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
625
                       help='Total number of iterations to train over all '
626
627
628
629
630
631
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
632
633
634
635
636
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
637
638
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
639
640
641
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
642
643
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
644
    group.add_argument('--no-masked-softmax-fusion',
645
646
647
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
648
                       dest='masked_softmax_fusion')
649
650
651
652
653
654
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
655
656
657
    group.add_argument('--use-flash-attn', action='store_true',
                       help='use FlashAttention implementation of attention. '
                       'https://arxiv.org/abs/2205.14135')
658
659
660
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
661
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
662
663
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
664
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
665
                       action='store_false',
slym's avatar
slym committed
666
667
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
668
669
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
670
671
672
673
674
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
675
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
676
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
677
678
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
679
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
680
681
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
682
683
684
    return parser


Mohammad's avatar
Mohammad committed
685
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
686
687
688
689
690
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
691
692
693
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
694
695
696
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
697
698
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
699

Mohammad's avatar
Mohammad committed
700
701
702
    return parser


Mohammad's avatar
Mohammad committed
703
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
704
705
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
706
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
707
708
709
710
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
711
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
Mohammad's avatar
Mohammad committed
712
713
714
715
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
716
717
718
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
719
720
721
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
722
723
724
725
726
727
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
728
    group.add_argument('--warmup', type=int, default=None,
729
                       help='Old lr warmup argument, do not use. Use one of the'
730
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
731
732
733
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
734
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
735
736
737
738
739
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
740
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
741
742
743
744
745
746
747
748
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
749
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
750
751
752
753
754
755
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
756
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
757
                       help='Do not save current optimizer.')
758
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
759
760
761
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
762
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
763
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
764
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
765
766
767
768
769
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
770
771
772
773
774
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
775
776
777
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Mohammad's avatar
Mohammad committed
778
779
780
781

    return parser


Mohammad's avatar
Mohammad committed
782
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
783
784
785
786
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
787
788
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
789
790
791
792
793
794
795
796
797
798
799
800
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
801
802
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
803
804
805
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
806
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
807
808
809
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
810
811
812
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
813
814
815
816
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
817
818
819
    return parser


Mohammad's avatar
Mohammad committed
820
def _add_distributed_args(parser):
821
822
    group = parser.add_argument_group(title='distributed')

823
824
825
826
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
827
828
829
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
830
831
832
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
833
834
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
835
836
837
838
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
839
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
840
841
                       help='which DistributedDataParallel implementation '
                       'to use.')
842
843
844
845
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
846
847
848
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
849
850
851
852
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
Mohammad's avatar
Mohammad committed
853
854
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
855
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
856
857
858
859
860
861
862
863
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
864
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
865
866
867
868
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
869
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
870
871
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
872
873
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
874
875
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
876

Mohammad's avatar
Mohammad committed
877
878
879
    return parser


Mohammad's avatar
Mohammad committed
880
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
881
882
883
884
885
886
887
888
889
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
890
891
892
    return parser


Mohammad's avatar
Mohammad committed
893
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
894
895
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
896
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
897
898
899
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
900
901
902
903
                       'dataset2-path ... It is used with --split when a '
                       'single dataset used for all three: train, valid '
                       'and test. It is exclusive to the other '
                       '--*-data-path args')
Mohammad's avatar
Mohammad committed
904
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
905
906
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
907
908
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    group.add_argument('--train-data-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--valid-data-path', nargs='*', default=None,
                       help='Path to the validation dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--test-data-path', nargs='*', default=None,
                       help='Path to the test dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
924

Mohammad's avatar
Mohammad committed
925
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
926
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
927
928
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
929
930
931
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
932
    group.add_argument('--seq-length', type=int, default=None,
933
                       help='Maximum sequence length to process.')
934
    group.add_argument('--encoder-seq-length', type=int, default=None,
935
936
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
937
938
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
939
940
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
941
                       'for retriever')
942
943
944
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
945
946
947
948
949
950
951
952
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
953
954
955
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
956
                                'BertWordPieceCase',
957
958
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer'],
Mohammad's avatar
Mohammad committed
959
                       help='What type of tokenizer to use.')
960
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
961
                       help='Sentencepiece tokenizer model.')
962
963
964
965
966
967
968
969
970
971
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
972

Mohammad's avatar
Mohammad committed
973
974
    return parser

Raul Puri's avatar
Raul Puri committed
975

Mohammad's avatar
Mohammad committed
976
977
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
978

Mohammad's avatar
Mohammad committed
979
980
981
982
983
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
984

Mohammad's avatar
Mohammad committed
985
    return parser
Neel Kant's avatar
Neel Kant committed
986
987


Mostofa Patwary's avatar
Mostofa Patwary committed
988
989
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
990
991
992

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
993
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
994
                        'REALM (paper default: 128)')
995
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
996
997
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
998
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
999
1000
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
1001
1002
1003
1004
1005

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
1006
1007
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
1008
1009
1010
1011
1012

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
1013
1014
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
1015
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
1016
                       help='Whether to use one sentence documents in ICT')
1017
1018
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
1019

1020
    # training
1021
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
1022
1023
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
1024
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
1025
1026
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
1027

Neel Kant's avatar
Neel Kant committed
1028
    # faiss index
Neel Kant's avatar
Neel Kant committed
1029
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
1030
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
1031
1032
1033
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
1034
1035
1036

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
1037
1038
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
1039
    group.add_argument('--indexer-log-interval', type=int, default=1000,
1040
1041
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
1042
    return parser
1043
1044


1045
1046
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
1047

1048
    # general vision arguements
1049
1050
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
1051
1052
1053
1054
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
1055
1056
1057
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
1058
                       help='patch dimension')
1059
1060
1061
1062
1063
1064
1065
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
1066
1067
1068
1069
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1070
1071
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
1072
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1073
                       choices=['classify', 'inpaint', 'dino'],
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1110
1111

    return parser