arguments.py 43.9 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vit_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
84
85
86
87
88
89
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
90

91
92
93
94
95
96
97
98
99
100
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
101
102
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
103
104
105
106
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
107
    del args.checkpoint_activations
108

Jared Casper's avatar
Jared Casper committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
123
124
125
126
127
128
129
130
131
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
132
    if args.num_layers_per_virtual_pipeline_stage is not None:
133
134
135
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
136
137
138
139
140
141
142
143
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
144

145
146
147
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
148
        assert not args.bf16
149
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
151
152
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153
154
155
156
157
158
159
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160

161
162
163
164
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

165
166
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
167
168
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
169
        assert args.use_contiguous_buffers_in_local_ddp
170

mshoeybi's avatar
mshoeybi committed
171
172
173
174
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

175
176
177
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

178
179
180
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
181

182
183
184
185
186
187
188
189
190
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
191
            'expected iteration-based learning rate warmup'
192
193
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
194
        if args.lr_warmup_fraction is not None:
195
            assert args.lr_warmup_iters == 0, \
196
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
197
198
199
200
201
202
203
204
205
206
207

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
208
        if args.lr_warmup_fraction is not None:
209
            assert args.lr_warmup_samples == 0, \
210
211
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
212

213
    # Check required arguments.
Mohammad's avatar
Mohammad committed
214
215
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
216
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
217
        _check_arg_is_not_none(args, req_arg)
218

Mohammad's avatar
Mohammad committed
219
    # Checks.
220
221
222
223
224
225
226
227
228
229
230
231
232
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
233

Mohammad's avatar
Mohammad committed
234
235
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
236
237
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
238
239
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
240
241
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
242
243
244
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
245
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
246
247
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248

249
250
251
252
    if args.weight_decay is not None:
        args.start_wd = args.weight_decay
        args.end_wd = args.weight_decay

Sangkug Lym's avatar
Sangkug Lym committed
253
254
255
256
257
258
259
260
261
262
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

263
264
265
266
267
268
269
270
271
272
273
274
275
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
        assert args.activations_checkpoint_method is not None, \
            'for distributed checkpoint activations to work you '\
            'need to use a activation-checkpoint method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed checkpoint activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Mohammad's avatar
Mohammad committed
276
277
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
278
279


Mohammad's avatar
Mohammad committed
280
281
282
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
283
284
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
285
286
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
287
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
288
289
290
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
291
292
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
293
294


295
296
297
298
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
299
300
301
302
303
304
305
306
307
308
309
310
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
311
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
312
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
313

314
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
315
                       help='Number of transformer layers.')
316
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
317
                       help='Tansformer hidden size.')
318
    group.add_argument('--ffn-hidden-size', type=int, default=None,
319
320
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
321
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
322
                       help='Number of transformer attention heads.')
323
    group.add_argument('--kv-channels', type=int, default=None,
324
325
326
327
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
328
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
329
330
331
332
333
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
334
335
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
336
337
338
339
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
340
341
342
343
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
344
    group.add_argument('--onnx-safe', type=bool, required=False,
345
346
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
347
348
349
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
350

Mohammad's avatar
Mohammad committed
351
352
353
    return parser


354
355
356
357
358
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
359
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
360
                       help='If set, calculate and log the number of zeros in gradient.')
361
362
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
363
364
365
366
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
383
384
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
385
                       help='Enable memory logging to tensorboard.')
386
387
388
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
389
390
391
392

    return parser


Mohammad's avatar
Mohammad committed
393
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
394
395
396
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
397
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
398
399
400
401
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
402
403
404
405
406
407
408
    group.add_argument('--start-wd', type=float, default=0.01,
                       help='Initial weight decay coefficient for L2 regularization.')
    group.add_argument('--end-wd', type=float, default=0.01,
                       help='End of run weight decay coefficient for L2 regularization.')
    group.add_argument('--wd-incr-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
409
410
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
411
    group.add_argument('--adam-beta1', type=float, default=0.9,
412
413
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
414
    group.add_argument('--adam-beta2', type=float, default=0.999,
415
416
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
417
    group.add_argument('--adam-eps', type=float, default=1e-08,
418
                       help='Term added to the denominator to improve'
419
                       'numerical stability')
420
421
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
422
423
424

    return parser

Mohammad's avatar
Mohammad committed
425
426

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
427
428
    group = parser.add_argument_group(title='training')

429
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
430
431
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
432
                       'parallel size times number of micro batches.')
433
434
435
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
436
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
437
438
439
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
440
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
441
442
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
443
444
445
446
447
448
449
450
451
452
453
454
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
455
456
457
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
458
459
460
461
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
462
463
464
465
466
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
467
468
469
470
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
471
472
473
474
475
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
476
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
477
                       help='Total number of iterations to train over all '
478
479
480
481
482
483
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
484
485
486
487
488
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
489
490
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
491
492
493
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
494
495
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
496
    group.add_argument('--no-masked-softmax-fusion',
497
498
499
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
500
                       dest='masked_softmax_fusion')
501
502
503
504
505
506
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
507
508
509
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
510
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
511
512
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
513
514
515
516
517
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_true',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.')
Sangkug Lym's avatar
Sangkug Lym committed
518
519
520
521
522
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Mohammad's avatar
Mohammad committed
523
524
525
    return parser


Mohammad's avatar
Mohammad committed
526
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
527
528
529
530
531
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
532
533
534
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
535
536
537
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
538
539
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
540

Mohammad's avatar
Mohammad committed
541
542
543
    return parser


Mohammad's avatar
Mohammad committed
544
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
545
546
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
547
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
548
549
550
551
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
552
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
553
554
555
556
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
557
558
559
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
560
561
562
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
563
564
565
566
567
568
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
569
    group.add_argument('--warmup', type=int, default=None,
570
                       help='Old lr warmup argument, do not use. Use one of the'
571
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
590
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
591
592
593
594
595
596
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
597
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
598
                       help='Do not save current optimizer.')
599
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
600
601
602
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
603
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
604
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
605
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
606
607
608
609
610
611
612
613
614
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
615
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
616
617
618
619
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
620
621
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
622
623
624
625
626
627
628
629
630
631
632
633
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
634
635
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
636
637
638
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
639
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
640
641
642
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
644
645
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
646
647
648
649
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
650
651
652
    return parser


Mohammad's avatar
Mohammad committed
653
def _add_distributed_args(parser):
654
655
    group = parser.add_argument_group(title='distributed')

656
657
658
659
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
660
661
662
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
663
664
665
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
666
667
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
668
669
670
671
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
672
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
673
674
                       help='which DistributedDataParallel implementation '
                       'to use.')
675
676
677
678
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
679
680
681
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
682
683
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
684
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
685
686
687
688
689
690
691
692
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
693
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
694
695
696
697
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
698
699
700
    group.add_argument('--deallocate-pipeline-outputs', action='store_true',
                       default=False, help='If set, pipeline output tensors '
                       'are deallocated during the forward pass.')
Mohammad's avatar
Mohammad committed
701
702
703
    return parser


Mohammad's avatar
Mohammad committed
704
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
705
706
707
708
709
710
711
712
713
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
714
715
716
    return parser


Mohammad's avatar
Mohammad committed
717
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
718
719
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
720
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
721
722
723
724
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
725
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
726
727
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
728
729
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
730
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
731
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
732
733
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
734
735
736
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
737
    group.add_argument('--seq-length', type=int, default=None,
738
                       help='Maximum sequence length to process.')
739
    group.add_argument('--encoder-seq-length', type=int, default=None,
740
741
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
742
743
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
744
745
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
746
                        ' for retriever')
747
748
749
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
750
751
752
753
754
755
756
757
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
758
759
760
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
761
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
762
763
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
764
765
766
767
768
769
770
771
772
773
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
774

Mohammad's avatar
Mohammad committed
775
776
    return parser

Raul Puri's avatar
Raul Puri committed
777

Mohammad's avatar
Mohammad committed
778
779
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
780

Mohammad's avatar
Mohammad committed
781
782
783
784
785
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
786

Mohammad's avatar
Mohammad committed
787
    return parser
Neel Kant's avatar
Neel Kant committed
788
789


Mostofa Patwary's avatar
Mostofa Patwary committed
790
791
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
792
793
794

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
795
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
796
                        'REALM (paper default: 128)')
797
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
798
799
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
800
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
801
802
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
803
804
805
806
807

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
808
809
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
810
811
812
813
814

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
815
816
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
817
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
818
                       help='Whether to use one sentence documents in ICT')
819
820
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
821

822
    # training
823
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
824
825
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
826
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
827
828
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
829

Neel Kant's avatar
Neel Kant committed
830
    # faiss index
Neel Kant's avatar
Neel Kant committed
831
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
832
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
833
834
835
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
836
837
838

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
839
840
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
841
    group.add_argument('--indexer-log-interval', type=int, default=1000,
842
843
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
844
    return parser
845
846
847
848
849
850
851


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
852
853
854
855
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
856
857
858
859
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')
860
861
862
863
864
865
866
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
867
868

    return parser