arguments.py 20.3 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20
21

import argparse
import os


22
23
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
24
    """Parse all arguments."""
25
26
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
27

Mohammad's avatar
Mohammad committed
28
29
30
31
32
33
34
35
36
37
38
39
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
40
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
41
42
43
44

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
45

Mohammad's avatar
Mohammad committed
46
    # Parse.
47
48
49
50
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
51

Mohammad's avatar
Mohammad committed
52
53
54
55
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    args.model_parallel_size = min(args.model_parallel_size, args.world_size)
    if args.rank == 0:
        print('using world size: {} and model-parallel size: {} '.format(
            args.world_size, args.model_parallel_size))
Mohammad's avatar
Mohammad committed
59

Mohammad's avatar
Mohammad committed
60
61
62
63
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
64

Mohammad's avatar
Mohammad committed
65
66
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
67
68
69
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
70
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
71
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
72
73
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
74
75
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
76
77
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
78

79
    # Check required arguments.
Mohammad's avatar
Mohammad committed
80
81
82
83
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
84

Mohammad's avatar
Mohammad committed
85
86
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
87
88
89
90
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
91
92
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
93
94
95
96
97
98
99
100
    # Parameters sharing does not work with torch DDP.
    if (args.num_unique_layers is not None) and (args.num_layers is not None):
        assert args.num_unique_layers <= args.num_layers
        assert args.num_layers % args.num_unique_layers == 0, \
            'num-layers should be divisible by num-unique-layers.'
        if args.num_unique_layers < args.num_layers:
            assert args.DDP_impl == 'local', \
                'torch-DDP does not work with parameters sharing.'
mohammad's avatar
mohammad committed
101
102
103
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
Mohammad's avatar
Mohammad committed
104

Mohammad's avatar
Mohammad committed
105
106
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
107
108


Mohammad's avatar
Mohammad committed
109
110
111
112
113
114
115
116
117
118
119
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
        print('-------------------- arguments --------------------', flush=True)
        str_list = []
        for arg in vars(args):
            dots = '.' * (32 - len(arg))
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
        print('---------------- end of arguments ----------------', flush=True)
Mohammad's avatar
Mohammad committed
120
121


122
123
124
125
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
126
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
127
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
128

129
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
130
                       help='Number of transformer layers.')
Mohammad's avatar
Mohammad committed
131
132
133
134
    group.add_argument('--num-unique-layers', type=int, default=None,
                       help='Number of unique transformer layers. '
                       '`num-layers` should be divisible by this value.')
    group.add_argument('--param-sharing-style', default='grouped',
mohammad's avatar
mohammad committed
135
                       choices=['grouped', 'spaced'],
Mohammad's avatar
Mohammad committed
136
137
138
139
140
                       help='Ordering of the shared parameters. For example, '
                       'for a `num-layers`=4 and `--num-unique-layers`=2, '
                       'we will have the following ordering for two unique '
                       'layers 1 and 2: '
                       '    grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].')
141
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
142
                       help='Tansformer hidden size.')
143
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
144
                       help='Number of transformer attention heads.')
145
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
146
147
148
149
150
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
151
152
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
153
154
155
156
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
157
158
159
160
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
161
162
    group.add_argument('--onnx-safe', action='store_true',
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
163

Mohammad's avatar
Mohammad committed
164
165
166
    return parser


Mohammad's avatar
Mohammad committed
167
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
168
169
170
171
172
173
174
175
176
177
178
179
180
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='Post attention dropout ptobability.')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')

    return parser

Mohammad's avatar
Mohammad committed
181
182

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
183
184
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
185
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
186
187
188
189
190
191
192
193
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
194
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
195
196
197
198
199
200
201
202
203
204
205
206
207
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')

    return parser


Mohammad's avatar
Mohammad committed
208
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
209
210
211
212
213
214
215
216
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
217

Mohammad's avatar
Mohammad committed
218
219
220
    return parser


Mohammad's avatar
Mohammad committed
221
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
222
223
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
224
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
255
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
280
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
281
282
283
284
285
286
287
288
289
290
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
291
292
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
293
294
295
296
297
298
299
300
301
302
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
303
304
305
306
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
307
308
309
310

    return parser


Mohammad's avatar
Mohammad committed
311
def _add_distributed_args(parser):
Mohammad's avatar
Mohammad committed
312
313
    group = parser.add_argument_group(title='mixed precision')

Mohammad's avatar
Mohammad committed
314
315
    group.add_argument('--model-parallel-size', type=int, default=1,
                       help='Size of the model parallel.')
Mohammad's avatar
Mohammad committed
316
317
318
319
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
320
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
321
322
323
324
325
326
327
328
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')

    return parser


Mohammad's avatar
Mohammad committed
329
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
330
331
332
333
334
335
336
337
338
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
339
340
341
    return parser


Mohammad's avatar
Mohammad committed
342
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
343
344
    group = parser.add_argument_group(title='data and dataloader')

Mohammad's avatar
Mohammad committed
345
    group.add_argument('--data-path', type=str, default=None,
Mohammad's avatar
Mohammad committed
346
                       help='Path to combined dataset to split.')
Mohammad's avatar
Mohammad committed
347
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
348
349
350
351
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
                       '`90,5,5` will use 90% of data for training, 5% for '
                       'validation and 5% for test.')
Mohammad's avatar
Mohammad committed
352
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
353
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
354
355
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
356
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
357
358
359
360
361
362
363
364
365
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
366
367
368
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
369
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
370
371
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
372
373
374
375
376
377
378
379
380
381
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
382

Mohammad's avatar
Mohammad committed
383
384
    return parser

Raul Puri's avatar
Raul Puri committed
385

Mohammad's avatar
Mohammad committed
386
387
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
388

Mohammad's avatar
Mohammad committed
389
390
391
392
393
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
394

Mohammad's avatar
Mohammad committed
395
    return parser
Neel Kant's avatar
Neel Kant committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
416
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
417
418
                       help='Whether to use one sentence documents in ICT')

419
420
421
422
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
423
424
425
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
426
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
427
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
428
429
430
431
432
433

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
434
435
    return parser