arguments.py 34.7 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
42
    parser = _add_biencoder_args(parser)
43
    parser = _add_vit_args(parser)
44
    parser = _add_logging_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
mohammad's avatar
mohammad committed
73
74
75
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

85
86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

Jared Casper's avatar
Jared Casper committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
110
111
112
113
114
115
116
117
118
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
119

120
121
122
123
124
125
126
127
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

128
129
130
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

131
132
133
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
134

135
136
137
138
139
140
141
142
143
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
144
            'expected iteration-based learning rate warmup'
145
146
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
147
        if args.lr_warmup_fraction is not None:
148
            assert args.lr_warmup_iters == 0, \
149
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
150
151
152
153
154
155
156
157
158
159
160

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
161
        if args.lr_warmup_fraction is not None:
162
            assert args.lr_warmup_samples == 0, \
163
164
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
165

166
    # Check required arguments.
Mohammad's avatar
Mohammad committed
167
168
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
169
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
170
        _check_arg_is_not_none(args, req_arg)
171

Mohammad's avatar
Mohammad committed
172
    # Checks.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
 
Mohammad's avatar
Mohammad committed
187
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
188
189
190
191
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
192
193
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
194
195
196
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
197
198
    if args.fp32_residual_connection:
        assert args.fp16, \
mshoeybi's avatar
mshoeybi committed
199
            'residual connection in fp32 only supported when using fp16.'
mohammad's avatar
mohammad committed
200
201
202
203
204
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
205
206
207
   
    # Load scaled_masked_softmax_fusion_kernels
    if args.masked_softmax_fusion:
208
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()
209
210
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

211
212
213
214
    # Load mixed precision fused layer norm.
    if args.fp32_residual_connection:
        fused_kernels.load_fused_mix_prec_layer_norm_kernel()

Mohammad's avatar
Mohammad committed
215
216
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
217
218


Mohammad's avatar
Mohammad committed
219
220
221
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
222
223
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
224
225
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
226
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
227
228
229
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
230
231
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
232
233


234
235
236
237
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
238
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
239
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
240

241
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
242
                       help='Number of transformer layers.')
243
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
244
                       help='Tansformer hidden size.')
245
    group.add_argument('--ffn-hidden-size', type=int, default=None,
246
247
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
248
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
249
                       help='Number of transformer attention heads.')
250
    group.add_argument('--kv-channels', type=int, default=None,
251
252
253
254
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
255
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
256
257
258
259
260
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
261
262
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
263
264
265
266
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
267
268
269
270
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
271
    group.add_argument('--onnx-safe', type=bool, required=False,
272
273
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
274
275
276
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
277

Mohammad's avatar
Mohammad committed
278
279
280
    return parser


281
282
283
284
285
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
286
287
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
288
289
290
291
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
Mohammad's avatar
Mohammad committed
308

Mohammad's avatar
Mohammad committed
309
310
311
    return parser


Mohammad's avatar
Mohammad committed
312
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
313
314
315
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
316
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
317
318
319
320
321
322
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
323
    group.add_argument('--adam-beta1', type=float, default=0.9,
324
325
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
326
    group.add_argument('--adam-beta2', type=float, default=0.999,
327
328
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
329
    group.add_argument('--adam-eps', type=float, default=1e-08,
330
                       help='Term added to the denominator to improve'
331
                       'numerical stability')
332
333
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
334
335
336

    return parser

Mohammad's avatar
Mohammad committed
337
338

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
339
340
    group = parser.add_argument_group(title='training')

341
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
342
343
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
344
                       'parallel size times number of micro batches.')
345
346
347
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
348
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
349
350
351
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
352
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
353
354
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
355
356
357
358
359
360
361
362
363
364
365
366
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
367
368
369
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
370
371
372
373
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
374
375
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
376
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
377
                       help='Total number of iterations to train over all '
378
379
380
381
382
383
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
384
385
386
387
388
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
389
390
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
391
392
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
393
    group.add_argument('--no-masked-softmax-fusion',
394
395
396
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
397
                       dest='masked_softmax_fusion')
398
399
400
401
402
403
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
404
405
406
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
407
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
408
409
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
Mohammad's avatar
Mohammad committed
410
411
412
    return parser


Mohammad's avatar
Mohammad committed
413
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
414
415
416
417
418
419
420
421
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
422
423
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
424

Mohammad's avatar
Mohammad committed
425
426
427
    return parser


Mohammad's avatar
Mohammad committed
428
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
429
430
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
431
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
432
433
434
435
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
436
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
437
438
439
440
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
441
442
443
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
444
445
446
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
447
448
449
450
451
452
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
453
    group.add_argument('--warmup', type=int, default=None,
454
                       help='Old lr warmup argument, do not use. Use one of the'
455
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
474
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
475
476
477
478
479
480
481
482
483
484
485
486
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
487
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
488
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
489
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
490
491
492
493
494
495
496
497
498
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
499
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
500
501
502
503
504
505
506
507
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
mohammad's avatar
mohammad committed
508
509
510
511
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
Mohammad's avatar
Mohammad committed
512
513
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
mohammad's avatar
mohammad committed
514
515
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
516
517
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
518
519
520
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
521
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
522
523
524
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad's avatar
Mohammad committed
525
526
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
527
528
529
530
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
531
532
533
    return parser


Mohammad's avatar
Mohammad committed
534
def _add_distributed_args(parser):
535
536
    group = parser.add_argument_group(title='distributed')

537
538
539
540
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
541
542
543
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
Mohammad's avatar
Mohammad committed
544
545
546
547
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
548
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
549
550
551
552
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
553
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
554
555
556
557
558
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
559
    group.add_argument('--use-cpu-initialization', action='store_true',
560
561
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Mohammad's avatar
Mohammad committed
562
563
564
    return parser


Mohammad's avatar
Mohammad committed
565
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
566
567
568
569
570
571
572
573
574
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
575
576
577
    return parser


Mohammad's avatar
Mohammad committed
578
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
579
580
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
581
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
582
583
584
585
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
586
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
587
588
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
589
590
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
591
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
592
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
593
594
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
595
    group.add_argument('--seq-length', type=int, default=None,
596
                       help='Maximum sequence length to process.')
597
    group.add_argument('--encoder-seq-length', type=int, default=None,
598
599
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
600
601
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mohammad's avatar
Mohammad committed
602
603
604
605
606
607
608
609
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
610
611
612
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
613
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
614
615
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
616
617
618
619
620
621
622
623
624
625
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
626

Mohammad's avatar
Mohammad committed
627
628
    return parser

Raul Puri's avatar
Raul Puri committed
629

Mohammad's avatar
Mohammad committed
630
631
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
632

Mohammad's avatar
Mohammad committed
633
634
635
636
637
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
638

Mohammad's avatar
Mohammad committed
639
    return parser
Neel Kant's avatar
Neel Kant committed
640
641


Mostofa Patwary's avatar
Mostofa Patwary committed
642
643
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
644
645
646

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
647
648
                       help='Size of block embeddings to be used in ICT and '
                        'REALM (paper default: 128)')
Mostofa Patwary's avatar
Mostofa Patwary committed
649
    group.add_argument('--projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
650
651
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
Mostofa Patwary's avatar
Mostofa Patwary committed
652
    group.add_argument('--shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
653
654
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Mostofa Patwary's avatar
Mostofa Patwary committed
655
656
    group.add_argument('--pool-type', type=str, default='cls-token',
                       choices=['avg', 'cls-token', 'max'],
Mostofa Patwary's avatar
Mostofa Patwary committed
657
658
                       help='different options are: avg | cls-token | max, '
                        'default=cls-token')
Neel Kant's avatar
Neel Kant committed
659
660
661
662
663

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
664
665
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
666
667
668
669
670

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
671
672
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
673
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
674
675
                       help='Whether to use one sentence documents in ICT')

676
    # training
Mostofa Patwary's avatar
Mostofa Patwary committed
677
    group.add_argument('--report-topk-accuracies', nargs='+', type=int, 
Mostofa Patwary's avatar
Mostofa Patwary committed
678
679
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
680
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
681
682
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
683

Neel Kant's avatar
Neel Kant committed
684
685
686
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Mostofa Patwary's avatar
Mostofa Patwary committed
687
688
    group.add_argument('--block-data-path', type=str, default=None,
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
689
690
691

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
692
693
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
694
    group.add_argument('--indexer-log-interval', type=int, default=1000,
695
696
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
697
    return parser
698
699
700
701
702
703
704
705
706
707
708
709
710
711


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

Neel Kant's avatar
Neel Kant committed
712
    return parser