arguments.py 29 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
57
    # Tensor model parallel size.
58
59
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
60
61
62
63
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
64
65
66
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
67
68
    if args.pipeline_model_parallel_size > 1:
        if "ring_exchange" not in dir(torch.distributed):
mohammad's avatar
mohammad committed
69
70
71
            raise Exception('PyTorch with torch.distributed.ring_exchange '
                            'needed to run pipeline MP!')
    # Checks.
72
73
74
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
mohammad's avatar
mohammad committed
75
76
77
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
78
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
79
    if args.rank == 0:
mohammad's avatar
mohammad committed
80
81
82
83
84
85
86
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

87
88
89
90
91
92
93
94
95
96
97
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

mohammad's avatar
mohammad committed
98
99
100
101
102
103
104
105
106
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
107

Mohammad's avatar
Mohammad committed
108
109
110
111
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
112

113
114
115
116
117
118
119
120
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

121
122
123
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
124

Mohammad's avatar
Mohammad committed
125
126
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
127
128
129
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
130
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
131
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
132
133
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
134
135
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
136
137
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
138

139
140
141
142
143
144
145
146
147
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
148
            'expected iteration-based learning rate warmup'
149
150
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
151
        if args.lr_warmup_fraction is not None:
152
            assert args.lr_warmup_iters == 0, \
153
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
154
155
156
157
158
159
160
161
162
163
164

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
165
        if args.lr_warmup_fraction is not None:
166
            assert args.lr_warmup_samples == 0, \
167
                'can only specify one of lr-warmup-fraction and lr-warmup-samples'
168

169
    # Check required arguments.
Mohammad's avatar
Mohammad committed
170
171
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
172
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
173
        _check_arg_is_not_none(args, req_arg)
174

Mohammad's avatar
Mohammad committed
175
176
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
177
178
179
180
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
181
182
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
183
184
185
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
186
187
188
189
190
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
191

192
193
194
195
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

196
197
198
199
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
200
201
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
202
203


Mohammad's avatar
Mohammad committed
204
205
206
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
207
208
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
209
210
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
211
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
212
213
214
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
215
216
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
217
218


219
220
221
222
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
223
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
224
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
225

226
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
227
                       help='Number of transformer layers.')
228
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
229
                       help='Tansformer hidden size.')
230
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
231
                       help='Number of transformer attention heads.')
232
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
233
234
235
236
237
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
238
239
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
240
241
242
243
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
244
245
246
247
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
248
    group.add_argument('--onnx-safe', type=bool, required=False,
249
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
250

Mohammad's avatar
Mohammad committed
251
252
253
    return parser


Mohammad's avatar
Mohammad committed
254
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
255
256
257
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
258
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
259
260
261
262
263
264
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
265
266
267
268
269
270
271
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
272
                       help='Term added to the denominator to improve'
273
                       'numerical stability')
Mohammad's avatar
Mohammad committed
274
275
276

    return parser

Mohammad's avatar
Mohammad committed
277
278

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
279
280
    group = parser.add_argument_group(title='training')

281
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
282
283
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
284
                       'parallel size times number of micro batches.')
285
286
287
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
288
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
289
290
291
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
292
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
293
294
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
295
296
297
298
299
300
301
302
303
304
305
306
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
307
308
309
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
310
311
312
313
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
314
315
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
316
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
317
                       help='Total number of iterations to train over all '
318
319
320
321
322
323
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
324
325
326
327
328
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
329
330
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
331
332
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
333
334
335
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
336
337
338
339
340
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
341
342
343
344
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
345
346
347
348

    return parser


Mohammad's avatar
Mohammad committed
349
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
350
351
352
353
354
355
356
357
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
358

Mohammad's avatar
Mohammad committed
359
360
361
    return parser


Mohammad's avatar
Mohammad committed
362
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
363
364
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
365
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
366
367
368
369
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
370
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
371
372
373
374
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
375
376
377
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
378
379
380
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
381
382
383
384
385
386
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
387
388
389
    group.add_argument('--warmup', type=int, default=None,
                       help='Old lr warmup argument, do not use. Use one of the '
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
408
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
433
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
434
435
436
437
438
439
440
441
442
443
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
444
445
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
446
447
448
449
450
451
452
453
454
455
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
456
457
458
459
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
460
461
462
463

    return parser


Mohammad's avatar
Mohammad committed
464
def _add_distributed_args(parser):
465
466
    group = parser.add_argument_group(title='distributed')

467
468
469
470
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
471
472
473
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
Mohammad's avatar
Mohammad committed
474
475
476
477
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
478
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
479
480
481
482
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
483
484
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
485
486
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
487
                       'This is for external DDP manager.' )
488
489
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
490
491
492
    return parser


Mohammad's avatar
Mohammad committed
493
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
494
495
496
497
498
499
500
501
502
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
503
504
505
    return parser


Mohammad's avatar
Mohammad committed
506
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
507
508
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
509
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
510
511
512
513
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
514
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
515
516
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
517
518
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
519
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
520
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
521
522
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
523
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
524
525
526
527
528
529
530
531
532
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
533
534
535
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
536
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
537
538
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
539
540
541
542
543
544
545
546
547
548
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
549

Mohammad's avatar
Mohammad committed
550
551
    return parser

Raul Puri's avatar
Raul Puri committed
552

Mohammad's avatar
Mohammad committed
553
554
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
555

Mohammad's avatar
Mohammad committed
556
557
558
559
560
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
561

Mohammad's avatar
Mohammad committed
562
    return parser
Neel Kant's avatar
Neel Kant committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
583
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
584
585
                       help='Whether to use one sentence documents in ICT')

586
587
588
589
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
590
591
592
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
593
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
594
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
595
596
597
598
599
600

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
601
    return parser