arguments.py 47 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vision_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
69
70
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
71
        if args.standalone_embedding_stage else
72
73
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
74
    # Checks.
75
76
77
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
78
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
79
80
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
81
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
82
    if args.rank == 0:
mohammad's avatar
mohammad committed
83
84
85
86
87
88
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
89
90
91
92
93
94
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
95

96
97
98
99
100
101
102
103
104
105
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
106
107
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
108
109
110
111
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
112
    del args.checkpoint_activations
113

Jared Casper's avatar
Jared Casper committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
128
129
130
131
132
133
134
135
136
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
137
    if args.num_layers_per_virtual_pipeline_stage is not None:
138
139
140
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
141
142
143
144
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
145
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
146
147
148
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
149

150
151
152
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153
        assert not args.bf16
154
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155
156
157
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158
159
160
161
162
163
164
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
165

166
167
168
169
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

170
171
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172
173
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
174
        assert args.use_contiguous_buffers_in_local_ddp
175

mshoeybi's avatar
mshoeybi committed
176
177
178
179
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

180
181
182
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

183
184
185
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
186

187
188
189
190
191
192
193
194
195
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
196
            'expected iteration-based learning rate warmup'
197
198
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
199
        if args.lr_warmup_fraction is not None:
200
            assert args.lr_warmup_iters == 0, \
201
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
202
203
204
205
206
207
208
209
210
211
212

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
213
        if args.lr_warmup_fraction is not None:
214
            assert args.lr_warmup_samples == 0, \
215
216
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
217

218
    # Check required arguments.
Mohammad's avatar
Mohammad committed
219
220
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
221
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
222
        _check_arg_is_not_none(args, req_arg)
223

Mohammad's avatar
Mohammad committed
224
    # Checks.
225
226
227
228
229
230
231
232
233
234
235
236
237
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
238

Mohammad's avatar
Mohammad committed
239
240
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
241
242
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
243
244
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
245
246
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
247
248
249
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
250
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
251
252
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
253

Vijay Korthikanti's avatar
Vijay Korthikanti committed
254
255
256
257
258
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
259
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
260
261
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
262

Sangkug Lym's avatar
Sangkug Lym committed
263
264
265
266
267
268
269
270
271
272
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

273
274
275
276
277
278
279
280
281
282
283
284
285
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
        assert args.activations_checkpoint_method is not None, \
            'for distributed checkpoint activations to work you '\
            'need to use a activation-checkpoint method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed checkpoint activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Mohammad's avatar
Mohammad committed
286
287
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
288
289


Mohammad's avatar
Mohammad committed
290
291
292
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
293
294
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
295
296
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
297
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
298
299
300
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
301
302
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
303
304


305
306
307
308
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
309
310
311
312
313
314
315
316
317
318
319
320
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
321
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
322
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
323

324
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
325
                       help='Number of transformer layers.')
326
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
327
                       help='Tansformer hidden size.')
328
    group.add_argument('--ffn-hidden-size', type=int, default=None,
329
330
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
331
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
332
                       help='Number of transformer attention heads.')
333
    group.add_argument('--kv-channels', type=int, default=None,
334
335
336
337
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
338
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
339
340
341
342
343
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
344
345
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
346
347
348
349
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
350
351
352
353
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
354
    group.add_argument('--onnx-safe', type=bool, required=False,
355
356
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
357
358
359
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
360

Mohammad's avatar
Mohammad committed
361
362
363
    return parser


364
365
366
367
368
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
369
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
370
                       help='If set, calculate and log the number of zeros in gradient.')
371
372
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
373
374
375
376
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
393
394
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
395
                       help='Enable memory logging to tensorboard.')
396
397
398
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
399
400
401
402

    return parser


Mohammad's avatar
Mohammad committed
403
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
404
405
406
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
407
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
408
409
410
411
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
412
    group.add_argument('--start-weight-decay', type=float,
413
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
414
    group.add_argument('--end-weight-decay', type=float,
415
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
416
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
417
418
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
419
420
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
421
    group.add_argument('--adam-beta1', type=float, default=0.9,
422
423
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
424
    group.add_argument('--adam-beta2', type=float, default=0.999,
425
426
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
427
    group.add_argument('--adam-eps', type=float, default=1e-08,
428
                       help='Term added to the denominator to improve'
429
                       'numerical stability')
430
431
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
432
433
434

    return parser

Mohammad's avatar
Mohammad committed
435
436

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
437
438
    group = parser.add_argument_group(title='training')

439
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
440
441
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
442
                       'parallel size times number of micro batches.')
443
444
445
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
446
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
447
448
449
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
450
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
451
452
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
453
454
455
456
457
458
459
460
461
462
463
464
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
465
466
467
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
468
469
470
471
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
472
473
474
475
476
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
477
478
479
480
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
481
482
483
484
485
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
486
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
487
                       help='Total number of iterations to train over all '
488
489
490
491
492
493
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
494
495
496
497
498
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
499
500
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
501
502
503
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
504
505
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
506
    group.add_argument('--no-masked-softmax-fusion',
507
508
509
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
510
                       dest='masked_softmax_fusion')
511
512
513
514
515
516
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
517
518
519
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
520
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
521
522
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
523
524
525
526
527
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_true',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.')
Sangkug Lym's avatar
Sangkug Lym committed
528
529
530
531
532
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Mohammad's avatar
Mohammad committed
533
534
535
    return parser


Mohammad's avatar
Mohammad committed
536
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
537
538
539
540
541
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
542
543
544
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
545
546
547
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
548
549
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
550

Mohammad's avatar
Mohammad committed
551
552
553
    return parser


Mohammad's avatar
Mohammad committed
554
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
555
556
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
557
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
558
559
560
561
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
562
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
563
564
565
566
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
567
568
569
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
570
571
572
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
573
574
575
576
577
578
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
579
    group.add_argument('--warmup', type=int, default=None,
580
                       help='Old lr warmup argument, do not use. Use one of the'
581
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
582
583
584
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
585
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
586
587
588
589
590
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
591
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
592
593
594
595
596
597
598
599
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
600
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
601
602
603
604
605
606
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
607
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
608
                       help='Do not save current optimizer.')
609
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
610
611
612
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
613
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
614
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
615
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
616
617
618
619
620
621
622
623
624
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
625
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
626
627
628
629
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
631
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
632
633
634
635
636
637
638
639
640
641
642
643
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
644
645
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
646
647
648
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
649
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
650
651
652
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
653
654
655
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
656
657
658
659
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
660
661
662
    return parser


Mohammad's avatar
Mohammad committed
663
def _add_distributed_args(parser):
664
665
    group = parser.add_argument_group(title='distributed')

666
667
668
669
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
670
671
672
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
673
674
675
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
676
677
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
678
679
680
681
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
682
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
683
684
                       help='which DistributedDataParallel implementation '
                       'to use.')
685
686
687
688
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
689
690
691
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
692
693
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
694
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
695
696
697
698
699
700
701
702
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
703
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
704
705
706
707
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
708
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
709
710
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
711
712
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
Mohammad's avatar
Mohammad committed
713
714
715
    return parser


Mohammad's avatar
Mohammad committed
716
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
717
718
719
720
721
722
723
724
725
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
726
727
728
    return parser


Mohammad's avatar
Mohammad committed
729
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
730
731
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
732
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
733
734
735
736
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
737
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
738
739
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
740
741
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
742
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
743
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
744
745
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
746
747
748
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
749
    group.add_argument('--seq-length', type=int, default=None,
750
                       help='Maximum sequence length to process.')
751
    group.add_argument('--encoder-seq-length', type=int, default=None,
752
753
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
754
755
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
756
757
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
758
                        ' for retriever')
759
760
761
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
762
763
764
765
766
767
768
769
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
770
771
772
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
773
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
774
775
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
776
777
778
779
780
781
782
783
784
785
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
786

Mohammad's avatar
Mohammad committed
787
788
    return parser

Raul Puri's avatar
Raul Puri committed
789

Mohammad's avatar
Mohammad committed
790
791
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
792

Mohammad's avatar
Mohammad committed
793
794
795
796
797
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
798

Mohammad's avatar
Mohammad committed
799
    return parser
Neel Kant's avatar
Neel Kant committed
800
801


Mostofa Patwary's avatar
Mostofa Patwary committed
802
803
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
804
805
806

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
807
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
808
                        'REALM (paper default: 128)')
809
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
810
811
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
812
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
813
814
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
815
816
817
818
819

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
820
821
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
822
823
824
825
826

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
827
828
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
829
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
830
                       help='Whether to use one sentence documents in ICT')
831
832
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
833

834
    # training
835
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
836
837
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
838
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
839
840
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
841

Neel Kant's avatar
Neel Kant committed
842
    # faiss index
Neel Kant's avatar
Neel Kant committed
843
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
844
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
845
846
847
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
848
849
850

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
851
852
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
853
    group.add_argument('--indexer-log-interval', type=int, default=1000,
854
855
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
856
    return parser
857
858


859
860
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
861

862
    # general vision arguements
863
864
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
865
866
867
868
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
869
870
871
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
872
                       help='patch dimension')
873
874
875
876
877
878
879
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
880
881
882
883
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
884
885
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
886
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
887
                       choices=['classify', 'inpaint', 'dino'],
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
924
925

    return parser