arguments.py 53.1 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5
6
7

import argparse
import os

8
import torch
Raul Puri's avatar
Raul Puri committed
9

10
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
11
    """Parse all arguments."""
12
13
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
14

Mohammad's avatar
Mohammad committed
15
16
17
18
19
20
21
22
23
24
25
26
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
27
    parser = _add_biencoder_args(parser)
28
    parser = _add_vision_args(parser)
29
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
30
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
31
32
33
34

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
35

Mohammad's avatar
Mohammad committed
36
    # Parse.
37
38
39
40
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
41

42
43
44
45
    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
        
46
47
48
    return args

def validate_args(args, defaults={}):
mohammad's avatar
mohammad committed
49
    # Tensor model parallel size.
50
51
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
52
53
54
55
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
56
57
58
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
59
60
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
61
        if args.standalone_embedding_stage else
62
63
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
64
    # Checks.
65
66
67
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
68
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
69
70
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
71
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
72
    if args.rank == 0:
mohammad's avatar
mohammad committed
73
74
75
76
77
78
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
79
80
81
82
83
84
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
85

86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
96

97
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
98
99
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
100
101
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
102
103
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
104
    del args.checkpoint_activations
105

Vijay Korthikanti's avatar
Vijay Korthikanti committed
106
107
108
109
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
124
125
126
127
128
129
130
131
132
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
133
    if args.num_layers_per_virtual_pipeline_stage is not None:
134
135
136
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
137
138
139
140
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
141
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
142
143
144
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
145

146
147
148
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
149
        assert not args.bf16
150
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151
152
153
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154
155
156
157
158
159
160
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

162
163
164
165
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

166
167
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168
169
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
170
        assert args.use_contiguous_buffers_in_local_ddp
Sangkug Lym's avatar
Sangkug Lym committed
171
172
173
174
175
176
177
178
    else:
        if args.gradient_accumulation_fusion:
            args.gradient_accumulation_fusion = False
            if args.rank == 0:
                print('Gradient accumulation fusion to linear layer weight '
                      'gradient computation is supported only with fp32 '
                      'gradient accumulation. Setting gradient_accumulation_fusion '
                      'to False', flush=True)
179

180
181
182
183
184
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
185

mshoeybi's avatar
mshoeybi committed
186
187
188
189
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

190
191
192
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

193
194
195
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
196

197
198
199
200
201
202
203
204
205
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
206
            'expected iteration-based learning rate warmup'
207
208
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
209
        if args.lr_warmup_fraction is not None:
210
            assert args.lr_warmup_iters == 0, \
211
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
212
213
214
215
216
217
218
219
220
221
222

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
223
        if args.lr_warmup_fraction is not None:
224
            assert args.lr_warmup_samples == 0, \
225
226
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
227

228
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
229
230
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
231
232
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
233
234
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
235
236
        args.num_layers = args.encoder_num_layers

237
    # Check required arguments.
Mohammad's avatar
Mohammad committed
238
239
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
240
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
241
        _check_arg_is_not_none(args, req_arg)
242

Mohammad's avatar
Mohammad committed
243
    # Checks.
244
245
246
247
248
249
250
251
252
253
254
255
256
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
257

Mohammad's avatar
Mohammad committed
258
259
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
260
261
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
262
263
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
264
265
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
266
267
268
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
269
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270
271
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
272

Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
274
275
276
277
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
278
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
279
280
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
281

Sangkug Lym's avatar
Sangkug Lym committed
282
283
284
285
286
287
288
289
290
291
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
292
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
293
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
294
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
295
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
296
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
297
298
299
300
301
302
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
303
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
304
            'distributed recompute activations are supported for pytorch ' \
305
306
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
307

Vijay Korthikanti's avatar
Vijay Korthikanti committed
308
309
310
311
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
312
313
314
315
316
317
318

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
319
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
321
322
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
323

Mohammad's avatar
Mohammad committed
324
325
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
326
327


Mohammad's avatar
Mohammad committed
328
329
330
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
331
332
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
333
334
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
335
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
336
337
338
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
339
340
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
341
342


343
344
345
346
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
347
348
349
350
351
352
353
354
355
356
357
358
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
359
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
360
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
361

362
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
363
                       help='Number of transformer layers.')
364
365
366
367
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
368
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
369
                       help='Tansformer hidden size.')
370
    group.add_argument('--ffn-hidden-size', type=int, default=None,
371
372
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
373
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
374
                       help='Number of transformer attention heads.')
375
    group.add_argument('--kv-channels', type=int, default=None,
376
377
378
379
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
380
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
381
382
383
384
385
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
386
387
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
388
389
390
391
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
392
393
394
395
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
396
    group.add_argument('--onnx-safe', type=bool, required=False,
397
398
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
399
400
401
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
402
403
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
404
405
406
    return parser


407
408
409
410
411
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
412
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
413
                       help='If set, calculate and log the number of zeros in gradient.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
440
441
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
442
443
444
445
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
462
463
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
464
                       help='Enable memory logging to tensorboard.')
465
466
467
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
468
469
470
471

    return parser


Mohammad's avatar
Mohammad committed
472
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
473
474
475
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
476
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
477
478
479
480
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
481
    group.add_argument('--start-weight-decay', type=float,
482
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
483
    group.add_argument('--end-weight-decay', type=float,
484
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
485
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
486
487
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
488
489
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
490
    group.add_argument('--adam-beta1', type=float, default=0.9,
491
492
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
493
    group.add_argument('--adam-beta2', type=float, default=0.999,
494
495
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
496
    group.add_argument('--adam-eps', type=float, default=1e-08,
497
                       help='Term added to the denominator to improve'
498
                       'numerical stability')
499
500
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
501
502
503

    return parser

Mohammad's avatar
Mohammad committed
504
505

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
506
507
    group = parser.add_argument_group(title='training')

508
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
509
510
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
511
                       'parallel size times number of micro batches.')
512
513
514
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
515
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
516
517
518
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
519
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
520
521
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
522
523
524
525
526
527
528
529
530
531
532
533
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
534
535
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
536
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
537
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
538
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
539
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
540
541
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
542
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
543
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
544
                       'layer is recomputed.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
545
    group.add_argument('--distribute-saved-activations',
546
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
547
                       help='If set, distribute recomputed activations '
548
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
549
    group.add_argument('--recompute-method', type=str, default=None,
550
551
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
552
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
553
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
554
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
555
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
556
557
558
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
559
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
560
                       'uniformly divided recompute unit, '
561
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
562
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
563
564
565
566
567

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
568
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
569
                       help='Total number of iterations to train over all '
570
571
572
573
574
575
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
576
577
578
579
580
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
581
582
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
583
584
585
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
586
587
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
588
    group.add_argument('--no-masked-softmax-fusion',
589
590
591
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
592
                       dest='masked_softmax_fusion')
593
594
595
596
597
598
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
599
600
601
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
602
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
603
604
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
605
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
606
                       action='store_false',
slym's avatar
slym committed
607
608
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
609
610
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
611
612
613
614
615
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
616
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
617
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
618
619
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
620
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
621
622
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
623
624
625
    return parser


Mohammad's avatar
Mohammad committed
626
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
627
628
629
630
631
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
632
633
634
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
635
636
637
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
638
639
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
640

Mohammad's avatar
Mohammad committed
641
642
643
    return parser


Mohammad's avatar
Mohammad committed
644
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
645
646
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
647
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
648
649
650
651
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
652
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
653
654
655
656
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
657
658
659
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
660
661
662
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
663
664
665
666
667
668
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
669
    group.add_argument('--warmup', type=int, default=None,
670
                       help='Old lr warmup argument, do not use. Use one of the'
671
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
672
673
674
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
675
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
676
677
678
679
680
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
681
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
682
683
684
685
686
687
688
689
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
690
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
691
692
693
694
695
696
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
697
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
698
                       help='Do not save current optimizer.')
699
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
700
701
702
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
703
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
704
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
705
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
706
707
708
709
710
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
711
712
713
714
715
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
716
717
718
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Mohammad's avatar
Mohammad committed
719
720
721
722

    return parser


Mohammad's avatar
Mohammad committed
723
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
724
725
726
727
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
728
729
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
730
731
732
733
734
735
736
737
738
739
740
741
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
742
743
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
744
745
746
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
747
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
748
749
750
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
751
752
753
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
754
755
756
757
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
758
759
760
    return parser


Mohammad's avatar
Mohammad committed
761
def _add_distributed_args(parser):
762
763
    group = parser.add_argument_group(title='distributed')

764
765
766
767
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
768
769
770
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
771
772
773
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
774
775
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
776
777
778
779
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
780
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
781
782
                       help='which DistributedDataParallel implementation '
                       'to use.')
783
784
785
786
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
787
788
789
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
790
791
792
793
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
Mohammad's avatar
Mohammad committed
794
795
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
796
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
797
798
799
800
801
802
803
804
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
805
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
806
807
808
809
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
810
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
811
812
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
813
814
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
815
816
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
817

Mohammad's avatar
Mohammad committed
818
819
820
    return parser


Mohammad's avatar
Mohammad committed
821
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
822
823
824
825
826
827
828
829
830
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
831
832
833
    return parser


Mohammad's avatar
Mohammad committed
834
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
835
836
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
837
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
838
839
840
841
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
842
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
843
844
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
845
846
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
847
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
848
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
849
850
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
851
852
853
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
854
    group.add_argument('--seq-length', type=int, default=None,
855
                       help='Maximum sequence length to process.')
856
    group.add_argument('--encoder-seq-length', type=int, default=None,
857
858
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
859
860
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
861
862
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
863
                        ' for retriever')
864
865
866
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
867
868
869
870
871
872
873
874
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
875
876
877
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
878
                                'BertWordPieceCase',
879
880
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer'],
Mohammad's avatar
Mohammad committed
881
                       help='What type of tokenizer to use.')
882
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
883
                       help='Sentencepiece tokenizer model.')
884
885
886
887
888
889
890
891
892
893
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
894

Mohammad's avatar
Mohammad committed
895
896
    return parser

Raul Puri's avatar
Raul Puri committed
897

Mohammad's avatar
Mohammad committed
898
899
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
900

Mohammad's avatar
Mohammad committed
901
902
903
904
905
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
906

Mohammad's avatar
Mohammad committed
907
    return parser
Neel Kant's avatar
Neel Kant committed
908
909


Mostofa Patwary's avatar
Mostofa Patwary committed
910
911
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
912
913
914

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
915
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
916
                        'REALM (paper default: 128)')
917
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
918
919
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
920
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
921
922
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
923
924
925
926
927

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
928
929
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
930
931
932
933
934

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
935
936
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
937
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
938
                       help='Whether to use one sentence documents in ICT')
939
940
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
941

942
    # training
943
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
944
945
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
946
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
947
948
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
949

Neel Kant's avatar
Neel Kant committed
950
    # faiss index
Neel Kant's avatar
Neel Kant committed
951
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
952
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
953
954
955
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
956
957
958

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
959
960
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
961
    group.add_argument('--indexer-log-interval', type=int, default=1000,
962
963
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
964
    return parser
965
966


967
968
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
969

970
    # general vision arguements
971
972
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
973
974
975
976
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
977
978
979
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
980
                       help='patch dimension')
981
982
983
984
985
986
987
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
988
989
990
991
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
992
993
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
994
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
995
                       choices=['classify', 'inpaint', 'dino'],
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1032
1033

    return parser