arguments.py 23.5 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
57
58
59
60
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
    args.model_parallel_size = min(args.model_parallel_size, args.world_size)
    if args.rank == 0:
        print('using world size: {} and model-parallel size: {} '.format(
            args.world_size, args.model_parallel_size))
Mohammad's avatar
Mohammad committed
61

Mohammad's avatar
Mohammad committed
62
63
64
65
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
66

67
68
69
70
71
72
73
74
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

75
76
77
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
78

Mohammad's avatar
Mohammad committed
79
80
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
81
82
83
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
84
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
85
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
86
87
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
88
89
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
90
91
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
92

93
    # Check required arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
    for req_arg in required_args: 
        _check_arg_is_not_none(args, req_arg)
98

Mohammad's avatar
Mohammad committed
99
100
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
101
102
103
104
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
105
106
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
107
108
109
110
111
112
113
114
    # Parameters sharing does not work with torch DDP.
    if (args.num_unique_layers is not None) and (args.num_layers is not None):
        assert args.num_unique_layers <= args.num_layers
        assert args.num_layers % args.num_unique_layers == 0, \
            'num-layers should be divisible by num-unique-layers.'
        if args.num_unique_layers < args.num_layers:
            assert args.DDP_impl == 'local', \
                'torch-DDP does not work with parameters sharing.'
mohammad's avatar
mohammad committed
115
116
117
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
118
119
120
121
122
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
123

124
125
126
127
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

128
129
130
131
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
132
133
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
134
135


Mohammad's avatar
Mohammad committed
136
137
138
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
139
140
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
141
142
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
143
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
144
145
146
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
147
148
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
149
150


151
152
153
154
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
155
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
156
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
157

158
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
159
                       help='Number of transformer layers.')
Mohammad's avatar
Mohammad committed
160
161
162
163
    group.add_argument('--num-unique-layers', type=int, default=None,
                       help='Number of unique transformer layers. '
                       '`num-layers` should be divisible by this value.')
    group.add_argument('--param-sharing-style', default='grouped',
mohammad's avatar
mohammad committed
164
                       choices=['grouped', 'spaced'],
Mohammad's avatar
Mohammad committed
165
166
167
168
169
                       help='Ordering of the shared parameters. For example, '
                       'for a `num-layers`=4 and `--num-unique-layers`=2, '
                       'we will have the following ordering for two unique '
                       'layers 1 and 2: '
                       '    grouped: [1, 2, 1, 2] and spaced: [1, 1, 2, 2].')
170
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
171
                       help='Tansformer hidden size.')
172
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
173
                       help='Number of transformer attention heads.')
174
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
175
176
177
178
179
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
180
181
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
182
183
184
185
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
186
187
188
189
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
190
    group.add_argument('--onnx-safe', type=bool, required=False,
191
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
192

Mohammad's avatar
Mohammad committed
193
194
195
    return parser


Mohammad's avatar
Mohammad committed
196
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
197
198
199
200
201
202
203
204
205
206
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
                       help='Post attention dropout ptobability.')
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
207
208
209
210
211
212
213
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
214
                       help='Term added to the denominator to improve'
215
                       'numerical stability')
Mohammad's avatar
Mohammad committed
216
217
218

    return parser

Mohammad's avatar
Mohammad committed
219
220

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
221
222
    group = parser.add_argument_group(title='training')

Mohammad's avatar
Mohammad committed
223
    group.add_argument('--batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
224
225
226
227
228
229
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
                       'parallel size.')
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
230
231
232
233
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
234
235
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
236
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
237
238
239
240
241
242
243
244
245
                       help='Total number of iterations to train over all '
                       'training runs.')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
246
247
248
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
249
250
251
252
253
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
254
255
256
257
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
258
259
260
261

    return parser


Mohammad's avatar
Mohammad committed
262
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
263
264
265
266
267
268
269
270
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
271

Mohammad's avatar
Mohammad committed
272
273
274
    return parser


Mohammad's avatar
Mohammad committed
275
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
276
277
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
278
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
                       choices=['constant', 'linear', 'cosine', 'exponential'],
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--warmup', type=float, default=0.01,
                       help='Percentage of total iterations to warmup on '
                       '(.01 = 1 percent of all training iters).')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
309
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
334
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
335
336
337
338
339
340
341
342
343
344
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
345
346
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
347
348
349
350
351
352
353
354
355
356
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
357
358
359
360
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
361
362
363
364

    return parser


Mohammad's avatar
Mohammad committed
365
def _add_distributed_args(parser):
366
    group = parser.add_argument_group(title='distributed')
Mohammad's avatar
Mohammad committed
367

Mohammad's avatar
Mohammad committed
368
369
    group.add_argument('--model-parallel-size', type=int, default=1,
                       help='Size of the model parallel.')
Mohammad's avatar
Mohammad committed
370
371
372
373
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
374
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
375
376
377
378
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
379
380
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
381
382
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
383
                       'This is for external DDP manager.' )
384
385
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
386
387
388
    return parser


Mohammad's avatar
Mohammad committed
389
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
390
391
392
393
394
395
396
397
398
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
399
400
401
    return parser


Mohammad's avatar
Mohammad committed
402
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
403
404
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
405
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
406
407
408
409
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
410
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
411
412
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
413
414
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
415
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
416
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
417
418
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
419
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
420
421
422
423
424
425
426
427
428
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
429
430
431
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
432
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
433
434
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
435
436
437
438
439
440
441
442
443
444
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
445

Mohammad's avatar
Mohammad committed
446
447
    return parser

Raul Puri's avatar
Raul Puri committed
448

Mohammad's avatar
Mohammad committed
449
450
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
451

Mohammad's avatar
Mohammad committed
452
453
454
455
456
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
457

Mohammad's avatar
Mohammad committed
458
    return parser
Neel Kant's avatar
Neel Kant committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
479
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
480
481
                       help='Whether to use one sentence documents in ICT')

482
483
484
485
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
486
487
488
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
489
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
490
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
491
492
493
494
495
496

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
497
498
    return parser