arguments.py 53.9 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5
6
7

import argparse
import os

8
import torch
Raul Puri's avatar
Raul Puri committed
9

10
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
11
    """Parse all arguments."""
12
13
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
14

Mohammad's avatar
Mohammad committed
15
16
17
18
19
20
21
22
23
24
25
26
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
27
    parser = _add_biencoder_args(parser)
28
    parser = _add_vision_args(parser)
29
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
30
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
31
32
33
34

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
35

Mohammad's avatar
Mohammad committed
36
    # Parse.
37
38
39
40
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
41

42
43
44
45
    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
        
46
47
48
    return args

def validate_args(args, defaults={}):
mohammad's avatar
mohammad committed
49
    # Tensor model parallel size.
50
51
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
52
53
54
55
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
56
57
58
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
59
60
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
61
        if args.standalone_embedding_stage else
62
63
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
64
    # Checks.
65
66
67
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
68
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
69
70
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
71
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
72
    if args.rank == 0:
mohammad's avatar
mohammad committed
73
74
75
76
77
78
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
79
80
81
82
83
84
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
85

86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
96

97
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
98
99
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
100
101
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
102
103
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
104
    del args.checkpoint_activations
105

Vijay Korthikanti's avatar
Vijay Korthikanti committed
106
107
108
109
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
124
125
126
127
128
129
130
131
132
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
133
    if args.num_layers_per_virtual_pipeline_stage is not None:
134
135
136
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
137
138
139
140
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
141
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
142
143
144
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
145

146
147
148
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
149
        assert not args.bf16
150
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151
152
153
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154
155
156
157
158
159
160
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

162
163
164
165
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

166
167
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168
169
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
170
        assert args.use_contiguous_buffers_in_local_ddp
171

172
173
174
175
176
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
177

mshoeybi's avatar
mshoeybi committed
178
179
180
181
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

182
183
184
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

185
186
187
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
188

189
190
191
192
193
194
195
196
197
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
198
            'expected iteration-based learning rate warmup'
199
200
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
201
        if args.lr_warmup_fraction is not None:
202
            assert args.lr_warmup_iters == 0, \
203
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
204
205
206
207
208
209
210
211
212
213
214

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
215
        if args.lr_warmup_fraction is not None:
216
            assert args.lr_warmup_samples == 0, \
217
218
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
219

220
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
221
222
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
223
224
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
225
226
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
227
228
        args.num_layers = args.encoder_num_layers

229
    # Check required arguments.
Mohammad's avatar
Mohammad committed
230
231
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
232
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
233
        _check_arg_is_not_none(args, req_arg)
234

Mohammad's avatar
Mohammad committed
235
    # Checks.
236
237
238
239
240
241
242
243
244
245
246
247
248
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
249

Mohammad's avatar
Mohammad committed
250
251
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
252
253
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
254
255
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
256
257
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
258
259
260
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
261
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
262
263
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
264

Vijay Korthikanti's avatar
Vijay Korthikanti committed
265
266
267
268
269
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
270
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
271
272
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
273

Sangkug Lym's avatar
Sangkug Lym committed
274
275
276
277
278
279
280
281
282
283
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
284
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
285
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
286
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
287
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
288
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
289
290
291
292
293
294
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
295
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
296
            'distributed recompute activations are supported for pytorch ' \
297
298
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
299

Vijay Korthikanti's avatar
Vijay Korthikanti committed
300
301
302
303
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
304
305
306
307
308
309
310

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
311
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
312
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
313
314
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315

Mohammad's avatar
Mohammad committed
316
317
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
318
319


Mohammad's avatar
Mohammad committed
320
321
322
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
323
324
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
325
326
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
327
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
328
329
330
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
331
332
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
333
334


335
336
337
338
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
339
340
341
342
343
344
345
346
347
348
349
350
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
351
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
352
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
353

354
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
355
                       help='Number of transformer layers.')
356
357
358
359
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
360
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
361
                       help='Tansformer hidden size.')
362
    group.add_argument('--ffn-hidden-size', type=int, default=None,
363
364
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
365
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
366
                       help='Number of transformer attention heads.')
367
    group.add_argument('--kv-channels', type=int, default=None,
368
369
370
371
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
372
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
373
374
375
376
377
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
378
379
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
380
381
382
383
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
384
385
386
387
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
388
    group.add_argument('--onnx-safe', type=bool, required=False,
389
390
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
391
392
393
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
394
395
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
396
397
398
    return parser


399
400
401
402
403
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
404
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
405
                       help='If set, calculate and log the number of zeros in gradient.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
432
433
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
434
435
436
437
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
454
455
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
456
                       help='Enable memory logging to tensorboard.')
457
458
459
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
460
461
462
463

    return parser


Mohammad's avatar
Mohammad committed
464
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
465
466
467
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
468
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
469
470
471
472
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
473
    group.add_argument('--start-weight-decay', type=float,
474
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
475
    group.add_argument('--end-weight-decay', type=float,
476
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
477
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
478
479
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
480
481
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
482
    group.add_argument('--adam-beta1', type=float, default=0.9,
483
484
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
485
    group.add_argument('--adam-beta2', type=float, default=0.999,
486
487
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
488
    group.add_argument('--adam-eps', type=float, default=1e-08,
489
                       help='Term added to the denominator to improve'
490
                       'numerical stability')
491
492
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
493
494
495

    return parser

Mohammad's avatar
Mohammad committed
496
497

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
498
499
    group = parser.add_argument_group(title='training')

500
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
501
502
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
503
                       'parallel size times number of micro batches.')
504
505
506
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
507
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
508
509
510
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
511
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
512
513
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
514
515
516
517
518
519
520
521
522
523
524
525
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
526
527
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
528
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
529
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
530
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
531
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
532
533
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
534
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
535
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
536
                       'layer is recomputed.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
537
    group.add_argument('--distribute-saved-activations',
538
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
539
                       help='If set, distribute recomputed activations '
540
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
541
    group.add_argument('--recompute-method', type=str, default=None,
542
543
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
544
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
545
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
546
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
547
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
548
549
550
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
551
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
552
                       'uniformly divided recompute unit, '
553
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
554
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
555
556
557
558
559

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
560
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
561
                       help='Total number of iterations to train over all '
562
563
564
565
566
567
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
568
569
570
571
572
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
573
574
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
575
576
577
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
578
579
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
580
    group.add_argument('--no-masked-softmax-fusion',
581
582
583
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
584
                       dest='masked_softmax_fusion')
585
586
587
588
589
590
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
591
592
593
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
594
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
595
596
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
597
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
598
                       action='store_false',
slym's avatar
slym committed
599
600
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
601
602
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
603
604
605
606
607
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
608
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
609
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
610
611
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
612
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
613
614
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
615
616
617
    return parser


Mohammad's avatar
Mohammad committed
618
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
619
620
621
622
623
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
624
625
626
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
627
628
629
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
630
631
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
632

Mohammad's avatar
Mohammad committed
633
634
635
    return parser


Mohammad's avatar
Mohammad committed
636
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
637
638
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
639
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
640
641
642
643
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
644
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
645
646
647
648
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
649
650
651
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
652
653
654
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
655
656
657
658
659
660
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
661
    group.add_argument('--warmup', type=int, default=None,
662
                       help='Old lr warmup argument, do not use. Use one of the'
663
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
664
665
666
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
667
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
668
669
670
671
672
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
673
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
674
675
676
677
678
679
680
681
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
682
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
683
684
685
686
687
688
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
689
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
690
                       help='Do not save current optimizer.')
691
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
692
693
694
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
695
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
696
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
697
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
698
699
700
701
702
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
703
704
705
706
707
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
708
709
710
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Mohammad's avatar
Mohammad committed
711
712
713
714

    return parser


Mohammad's avatar
Mohammad committed
715
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
716
717
718
719
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
720
721
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
722
723
724
725
726
727
728
729
730
731
732
733
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
734
735
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
736
737
738
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
739
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
740
741
742
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
743
744
745
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
746
747
748
749
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
750
751
752
    return parser


Mohammad's avatar
Mohammad committed
753
def _add_distributed_args(parser):
754
755
    group = parser.add_argument_group(title='distributed')

756
757
758
759
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
760
761
762
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
763
764
765
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
766
767
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
768
769
770
771
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
772
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
773
774
                       help='which DistributedDataParallel implementation '
                       'to use.')
775
776
777
778
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
779
780
781
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
782
783
784
785
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
Mohammad's avatar
Mohammad committed
786
787
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
788
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
789
790
791
792
793
794
795
796
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
797
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
798
799
800
801
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
802
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
803
804
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
805
806
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
807
808
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
809

Mohammad's avatar
Mohammad committed
810
811
812
    return parser


Mohammad's avatar
Mohammad committed
813
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
814
815
816
817
818
819
820
821
822
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
823
824
825
    return parser


Mohammad's avatar
Mohammad committed
826
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
827
828
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
829
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
830
831
832
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
833
834
835
836
                       'dataset2-path ... It is used with --split when a '
                       'single dataset used for all three: train, valid '
                       'and test. It is exclusive to the other '
                       '--*-data-path args')
Mohammad's avatar
Mohammad committed
837
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
838
839
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
840
841
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    group.add_argument('--train-data-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--valid-data-path', nargs='*', default=None,
                       help='Path to the validation dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--test-data-path', nargs='*', default=None,
                       help='Path to the test dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
857

Mohammad's avatar
Mohammad committed
858
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
859
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
860
861
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
862
863
864
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
865
    group.add_argument('--seq-length', type=int, default=None,
866
                       help='Maximum sequence length to process.')
867
    group.add_argument('--encoder-seq-length', type=int, default=None,
868
869
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
870
871
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
872
873
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
874
                        ' for retriever')
875
876
877
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
878
879
880
881
882
883
884
885
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
886
887
888
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
889
                                'BertWordPieceCase',
890
891
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer'],
Mohammad's avatar
Mohammad committed
892
                       help='What type of tokenizer to use.')
893
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
894
                       help='Sentencepiece tokenizer model.')
895
896
897
898
899
900
901
902
903
904
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
905

Mohammad's avatar
Mohammad committed
906
907
    return parser

Raul Puri's avatar
Raul Puri committed
908

Mohammad's avatar
Mohammad committed
909
910
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
911

Mohammad's avatar
Mohammad committed
912
913
914
915
916
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
917

Mohammad's avatar
Mohammad committed
918
    return parser
Neel Kant's avatar
Neel Kant committed
919
920


Mostofa Patwary's avatar
Mostofa Patwary committed
921
922
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
923
924
925

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
926
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
927
                        'REALM (paper default: 128)')
928
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
929
930
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
931
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
932
933
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
934
935
936
937
938

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
939
940
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
941
942
943
944
945

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
946
947
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
948
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
949
                       help='Whether to use one sentence documents in ICT')
950
951
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
952

953
    # training
954
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
955
956
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
957
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
958
959
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
960

Neel Kant's avatar
Neel Kant committed
961
    # faiss index
Neel Kant's avatar
Neel Kant committed
962
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
963
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
964
965
966
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
967
968
969

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
970
971
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
972
    group.add_argument('--indexer-log-interval', type=int, default=1000,
973
974
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
975
    return parser
976
977


978
979
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
980

981
    # general vision arguements
982
983
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
984
985
986
987
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
988
989
990
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
991
                       help='patch dimension')
992
993
994
995
996
997
998
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
999
1000
1001
1002
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1003
1004
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
1005
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1006
                       choices=['classify', 'inpaint', 'dino'],
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1043
1044

    return parser