tf.cpp 47.6 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
30

Khalique's avatar
Khalique committed
31
32
33
34
35
36
37
38
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
39
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
40
41
42
43
44
45
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
46
        if(should_transpose(ins))
Paul's avatar
Paul committed
47
48
49
50
51
52
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
53
        if(should_transpose(ins))
Paul's avatar
Paul committed
54
55
56
57
58
59
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
60
        if(should_transpose(ins))
Paul's avatar
Paul committed
61
62
63
64
65
66
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
67
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
68
69
70
71
72
73
74
75
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
76
        std::transform(
Paul's avatar
Paul committed
77
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
78
79
80
        return result;
    }

Khalique's avatar
Khalique committed
81
    std::vector<size_t>
82
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
83
    {
84
85
86
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
87
        if(is_nhwc)
88
        {
Khalique's avatar
Khalique committed
89
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
90
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
91
            });
92
93
94
95
        }
        return axes;
    }

Khalique's avatar
Khalique committed
96
    template <class T>
97
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
98
99
100
    {
        if(is_nhwc)
        {
101
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
102
103
104
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
105
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
106
            return new_axes;
Khalique's avatar
Khalique committed
107
        }
108
        return axes;
Khalique's avatar
Khalique committed
109
110
    }

Khalique's avatar
Khalique committed
111
112
113
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
114
    template <class T>
115
    void reorder_data(std::vector<T>& prev_data) const
116
117
    {
        std::vector<T> new_data(prev_data.size());
118
        for(size_t i = 0; i < new_data.size(); i++)
119
        {
Khalique's avatar
Khalique committed
120
            auto new_idx         = parse_axis(i, new_data.size());
121
            new_data.at(new_idx) = prev_data.at(i);
122
        }
123
124
125
126
        prev_data = new_data;
    }

    template <class T>
127
    T parse_axis(const T& dim, const size_t num_dims) const
128
    {
Khalique's avatar
Khalique committed
129
        T new_dim = dim;
Khalique's avatar
Khalique committed
130
        if(is_nhwc and num_dims >= 4)
131
132
133
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
134
135
136
137
138
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
139
140
            }
        }
Khalique's avatar
Khalique committed
141
        return new_dim;
142
143
    }

144
145
146
147
148
149
150
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
151
    std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
Khalique's avatar
Khalique committed
152
    {
Khalique's avatar
Khalique committed
153
        uint32_t bitwise_compare = 1;
Khalique's avatar
Khalique committed
154
155
156
157
158
159
160
161
162
163
164
165
        std::vector<int64_t> axes;
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((mask >> i) & bitwise_compare) == 1)
                axes.push_back(1);
            else
                axes.push_back(0);
        }
        return axes;
    }

Khalique's avatar
Khalique committed
166
167
    tf_parser()
    {
Khalique's avatar
Khalique committed
168
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
169
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
170
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
171
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
172
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
173
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
174
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
175
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
176

177
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
178
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
179
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
180
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
181
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
182

183
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
184
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
Khalique's avatar
Khalique committed
185
        add_mem_op("BatchMatMulV2", &tf_parser::parse_matmul, false);
186
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
187
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
188
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
189
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
190
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
191
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
192
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
193
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
194
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
195
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
196
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
197
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
198
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
199
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
200
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
201
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
202
        add_mem_op("Slice", &tf_parser::parse_slice, false);
Khalique's avatar
Khalique committed
203
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>, false);
Paul's avatar
Paul committed
204
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
205
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
206
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
207
208
    }

209
    template <class F>
Paul's avatar
Paul committed
210
    void add_op(std::string name, F f, bool transpose = true)
211
    {
Paul's avatar
Paul committed
212
        if(transpose)
Paul's avatar
Paul committed
213
        {
Paul's avatar
Paul committed
214
215
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
216
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
217
218
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
219
220
221
222
223
        }
        else
        {
            ops.emplace(name, f);
        }
224
225
    }

Khalique's avatar
Khalique committed
226
    template <class F>
Paul's avatar
Paul committed
227
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
228
    {
Paul's avatar
Paul committed
229
230
231
232
233
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
234
235
236
237
238
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
254
255
256
257
258
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
259
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
275
276
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
277
278
279
280
281

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

282
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
283
284
285
286
287
288
289
290
291
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
292
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
293
294
295
        }
        else
        {
Paul's avatar
Paul committed
296
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
297
298
299
300
        }
    }

    template <class T>
Paul's avatar
Paul committed
301
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
302
    {
Paul's avatar
Paul committed
303
304
305
306
307
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
308
309
310
311
312
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
313
314
315
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
316
317
318
319
320
321
322
323
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

324
    instruction_ref
Khalique's avatar
Khalique committed
325
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
326
    {
327
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
328
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
329
        return prog.add_instruction(op::add{}, args[0], l0);
330
331
    }

Khalique's avatar
Khalique committed
332
333
334
335
336
337
338
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
339
340
341
342
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
343
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
344
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
345
        op::concat op{axis};
346
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
347
348
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
349
350
351
352
353
354
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
355
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
356
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
357
358
359
360
361
362
363
364
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
365
            std::vector<size_t> stride;
366
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
367
            reorder_data(stride);
368
369
            if(stride.size() != 4)
            {
370
                MIGRAPHX_THROW("strides should have 4 values");
371
            }
372
373
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
374
375
376
        }
        if(contains(attributes, "dilations"))
        {
377
            std::vector<size_t> dilation;
378
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
379
            reorder_data(dilation);
380
381
382
383
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
384
385
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
386
        }
Khalique's avatar
Khalique committed
387

Paul's avatar
Paul committed
388
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
389
        auto l0      = args[0];
Khalique's avatar
Khalique committed
390
391
392
393
394
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
395
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
396
397
398
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
399
400
401

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
402
403
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
404
405
406
407
408
409
410
411

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
412
413
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
414
                }
415
416
417
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
418
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
419
            }
Khalique's avatar
Khalique committed
420
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
421
            {
422
                std::vector<size_t> padding;
423
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
424
425
426
427
428
429
430
431
432
433
434
435
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
436
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
437
438
    }

Khalique's avatar
Khalique committed
439
440
441
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
442
443
444
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
445
        op.group            = num_channels;
Khalique's avatar
Khalique committed
446

Khalique's avatar
Khalique committed
447
448
        if(contains(attributes, "strides"))
        {
449
            std::vector<size_t> stride;
450
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
451
            reorder_data(stride);
452
453
            if(stride.size() != 4)
            {
454
                MIGRAPHX_THROW("strides should have 4 values");
455
            }
456
457
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
458
        }
Paul's avatar
Paul committed
459
460

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
461
462
        if(contains(attributes, "dilations"))
        {
463
            std::vector<size_t> dilation;
464
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
465
            reorder_data(dilation);
466
467
468
469
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
470
471
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
472
473
        }

Khalique's avatar
Khalique committed
474
        auto l0 = args[0];
Khalique's avatar
Khalique committed
475
476
477
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
478

Khalique's avatar
Khalique committed
479
480
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
481
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
482
483
484
485
486
487
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
488
489
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);
Khalique's avatar
Khalique committed
490
491
492
493
494
495
496
497

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
498
499
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
500
                }
Khalique's avatar
Khalique committed
501
            }
Khalique's avatar
Khalique committed
502
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
503
            {
Khalique's avatar
Khalique committed
504
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
505
506
            }
        }
Khalique's avatar
Khalique committed
507

Khalique's avatar
Khalique committed
508
509
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
510
511
512
513

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
514
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
515
516
517
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
518
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
519
520
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
521

Khalique's avatar
Khalique committed
522
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
523
524
    }

Khalique's avatar
Khalique committed
525
526
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
527
528
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
529
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
530
        size_t num_dims = input_dims.size();
531
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
532
533

        if(dim < 0)
Khalique's avatar
Khalique committed
534
535
536
537
538
539
540
541
542
543
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
544
545
546
547
548
549
550
551
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
552
553
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
554
555
556
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
557

558
559
560
561
562
563
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
564
            transb = attributes.at("transpose_b").b();
565
566
        }

Khalique's avatar
Khalique committed
567
568
569
570
571
572
573
574
575
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

576
577
578
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
579
        std::iter_swap(perm.end() - 1, perm.end() - 2);
580
581
582
583
584
585
586

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
587
588
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
589
    {
Khalique's avatar
Khalique committed
590
591
        bool keep_dims = attributes.at("keep_dims").b();
        auto axes      = args[1]->eval().get<int32_t>().to_vector<int64_t>();
Khalique's avatar
Khalique committed
592
593

        if(keep_dims)
Khalique's avatar
Khalique committed
594
        {
595
596
597
598
599
600
            return prog.add_instruction(op::reduce_mean{axes}, args[0]);
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_mean{axes}, args[0]);
            return prog.add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
601
602
603
        }
    }

Khalique's avatar
Khalique committed
604
605
606
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
607
608
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

Khalique's avatar
Khalique committed
609
        int64_t axis    = -1;
Khalique's avatar
Khalique committed
610
611
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
612

Khalique's avatar
Khalique committed
613
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
614
615
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
616
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
617
        }
Khalique's avatar
Khalique committed
618

Khalique's avatar
Khalique committed
619
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
620
621
622
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
623
624
625
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
626
627
628
629
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
630
631
632
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
633
634
635
636
637
638
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
639
640
641
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
642
643
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
644
645
        }

Khalique's avatar
Khalique committed
646
647
648
649
650
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
651
652
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
653
654
    }

Khalique's avatar
Khalique committed
655
656
657
658
659
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
660
661
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
662
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
663
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
664
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
665
        {
Khalique's avatar
Khalique committed
666
667
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
668
669
670
671
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
672
673
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
674
        {
Khalique's avatar
Khalique committed
675
676
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
677
678
        }
        op.pads = pads;
Paul's avatar
Paul committed
679
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
680
681
    }

682
683
684
685
686
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
687

688
689
        if(contains(attributes, "strides"))
        {
690
            std::vector<size_t> stride;
691
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
692
            reorder_data(stride);
693
694
695
696
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
697
698
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
699
700
701
        }
        if(contains(attributes, "ksize"))
        {
702
            std::vector<size_t> ksize;
703
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
704
            reorder_data(ksize);
705
706
707
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
708
            }
709
710
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
711
        }
Khalique's avatar
Khalique committed
712
713

        auto l0 = args[0];
Khalique's avatar
Khalique committed
714
715
716
717
718
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
719
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
720
721
                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
722
723
                calculate_padding(0, pads, input_dims[2], op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_dims[3], op.stride[1], 1, op.lengths[1]);
Khalique's avatar
Khalique committed
724
725
726
727

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
728
729
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
730
731
732
                }
                else
                {
Khalique's avatar
Khalique committed
733
734
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
735
                }
Khalique's avatar
Khalique committed
736
737
738
739
740
741
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
742
        return prog.add_instruction(op, l0);
743
    }
Khalique's avatar
Khalique committed
744

745
    instruction_ref
Khalique's avatar
Khalique committed
746
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
747
748
749
750
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
751
        auto s = args[1]->eval();
752
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
753
        return prog.add_instruction(op, make_contiguous(args[0]));
754
755
    }

Khalique's avatar
Khalique committed
756
757
758
759
760
761
762
763
764
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
765
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
766
767
768
        }
    }

769
    instruction_ref
Khalique's avatar
Khalique committed
770
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
771
    {
Khalique's avatar
Khalique committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
792
793
794
795
796
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
797
    {
Khalique's avatar
Khalique committed
798
        int axis      = -1;
Khalique's avatar
Khalique committed
799
800
801
802
803
804
805
806
807
808
809
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
810
811
    }

Khalique's avatar
Khalique committed
812
813
814
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
815
816
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
817
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
818
        auto axes       = attributes.at("squeeze_dims").list().i();
819
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
820

821
822
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
823
            for(size_t i = 0; i < input_dims.size(); i++)
824
            {
Khalique's avatar
Khalique committed
825
                if(input_dims.at(i) == 1)
826
827
828
829
                {
                    op.axes.push_back(i);
                }
            }
830
        }
Paul's avatar
Paul committed
831
        return prog.add_instruction(op, make_contiguous(args[0]));
832
833
    }

Khalique's avatar
Khalique committed
834
835
836
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
837
838
    {
        op::slice op;
Khalique's avatar
Khalique committed
839
840
841
842
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
843
        std::vector<size_t> axes = l0->get_shape().lens();
844

Khalique's avatar
Khalique committed
845
846
847
848
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
849
850
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
851
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
852
        uint32_t bitwise_compare  = 1;
853
854
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
855
856
857
858
859
860
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

861
        if(contains(attributes, "shrink_axis_mask"))
862
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
863

Khalique's avatar
Khalique committed
864
        std::vector<int64_t> begin_axes = get_axes_from_mask(num_axes, begin_mask);
Khalique's avatar
Khalique committed
865
        std::vector<int64_t> end_axes   = get_axes_from_mask(num_axes, end_mask);
Khalique's avatar
Khalique committed
866
867
868
869
870
871
872
873
874
875
876
877
878

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

879
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
880
        if(shrink_axis_mask == 0)
881
            return l1;
Khalique's avatar
Khalique committed
882

Khalique's avatar
Khalique committed
883
        for(size_t i = 0; i < num_axes; i++)
884
        {
885
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
886
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
887
888
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
889

890
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
891
892
    }

Khalique's avatar
Khalique committed
893
894
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
895
896
897
898
899
900
901
902
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
903
904
905
906
907
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
908
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
909
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
910
911
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
912
            if(is_nhwc and dims.size() >= 4)
913
            {
914
                reorder_data(dims);
915
            }
Khalique's avatar
Khalique committed
916
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
917
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
918
919
920
        }
        for(auto&& p : nodes)
        {
921
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
922
923
924
925
926
927
928
929
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
930
931
932
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
933
934
935
936
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
937
938
939
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
954
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
955
956
957
958
959
960
961
962
963
964
965
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
966
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
967
968
969
970
971
972
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
973
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
974

Khalique's avatar
Khalique committed
975
976
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1004
1005
1006
1007
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1008
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1009
1010
1011

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1024
        // tf pb should not use these types
Paul's avatar
Paul committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1048
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1049
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1050
1051
1052
1053
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1054
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1055
1056
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1057
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1058
1059
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1060
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1061
1062
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1063
1064
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1065
            case tensorflow::DataType::DT_BOOL:
1066
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1067
1068
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1069
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1070
1071
1072
1073
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1074
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1075
1076
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1115
1116
1117
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1118
1119
1120
1121
1122
1123
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1124
1125
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1126
        case tensorflow::DataType::DT_INT8:
1127
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1128
        case tensorflow::DataType::DT_UINT16:
1129
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1130
        case tensorflow::DataType::DT_INT16:
1131
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1132
        case tensorflow::DataType::DT_INT32:
1133
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1134
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1135
1136
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1137
        case tensorflow::DataType::DT_BOOL:
1138
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1139
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1140
        {
1141
1142
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1143
1144
1145
1146
1147
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1148
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1149
        }
Khalique's avatar
Khalique committed
1150
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1151
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1190
1191
1192
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1193
1194
1195
1196
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1197
    template <class T>
Khalique's avatar
Khalique committed
1198
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1199
                                        const size_t& shape_size)
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1212
1213
1214
1215
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1216
1217
1218
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1219
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1220
1221
        return dims;
    }
1222
1223

    template <class T>
Khalique's avatar
Khalique committed
1224
    static literal
1225
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1226
    {
Khalique's avatar
Khalique committed
1227
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1228
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1229
            return literal{{shape_type}, data};
1230
1231
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1254
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1255
1256
1257
1258
1259
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx