task.py 66.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
    group: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
79
80
81
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
    doc_to_decontamination_query: Optional[str] = None
96
97
98
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
102
103
104
105
106
107
108
109
110
111
112
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
113
        if self.generation_kwargs is not None:
114
            if self.output_type != "generate_until":
115
                eval_logger.warning(
116
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
119
120
121
122
123
124
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
125
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
126
        else:
127
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
128
129
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
130
131
132
133
134
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
135
136
                    "do_sample": False,
                }
137

138
139
140
    def __getitem__(self, item):
        return getattr(self, item)

141
142
143
    def __setitem__(self, item, value):
        return setattr(self, item, value)

144
    def to_dict(self, keep_callable: bool = False) -> dict:
145
146
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
147
        Used for dumping results alongside full task configuration
148

haileyschoelkopf's avatar
haileyschoelkopf committed
149
150
151
152
153
154
155
156
157
158
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
159
160
161
162
163
164
165
166
167
168
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
169
        return cfg_dict
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

187
188
189
190
191
192
193
194
195
196
197

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

198
    VERSION: Optional[Union[int, str]] = None
199

200
201
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
202
    DATASET_PATH: Optional[str] = None
203
204

    # The name of a subset within `DATASET_PATH`.
205
    DATASET_NAME: Optional[str] = None
206

207
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
208

209
210
    def __init__(
        self,
211
212
213
214
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
215
    ) -> None:
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
238
239
240
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
241

242
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
243

lintangsutawika's avatar
lintangsutawika committed
244
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
245
246
247
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
248

249
250
251
252
253
254
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
279
280
281
282
283
284
285
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
286

287
    @property
288
    def config(self) -> TaskConfig:
289
290
291
        """Returns the TaskConfig associated with this class."""
        return self._config

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

307
    def training_docs(self) -> Iterable:
308
309
310
311
312
313
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

314
    def validation_docs(self) -> Iterable:
315
316
317
318
319
320
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

321
    def test_docs(self) -> Iterable:
322
323
324
325
326
327
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

328
    def fewshot_docs(self) -> Iterable:
329
330
331
332
333
334
335
336
337
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
338
            eval_logger.warning(
339
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
340
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
341
            )
342
343
            return self.test_docs()

344
    def _process_doc(self, doc: dict) -> dict:
345
346
347
348
349
350
351
352
353
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
354

355
    @property
356
    def instances(self) -> List[Instance]:
357
358
359
360
361
362
363
364
365
366
367
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

368
369
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
370
371
372
373
374
375
376
377
378
379
380
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

381
382
383
384
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

385
386
    def build_all_requests(
        self,
387
        *,
388
389
390
391
392
393
394
395
396
397
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
398
    ) -> None:
399
        """Build a set of Instances for a task, and store them in task.instances"""
400
401
402
403

        # used with caching
        og_limit = limit

404
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
405
406
407
408
409
410
411
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
412
        cache_key += f"-tokenizer{tokenizer_name}"
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
428
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
429

430
        instances = []
431
432
433
434
435
436
437
438
439
440

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
441
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
442
443
444
445
446
447
448
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
449
        ):
450
            # sample fewshot context #TODO: need to offset doc_id by rank now!
451
            fewshot_ctx = self.fewshot_context(
452
                doc,
453
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
454
455
456
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
457
                chat_template,
458
            )
459

460
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
461
462
463
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
464
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
465
            )
466
467
468
469

            if not isinstance(inst, list):
                inst = [inst]

470
471
472
473
474
475
476
477
478
479
480
481
482
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
483

484
485
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
486

487
488
489
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
506
            The number of times each instance in a dataset is inferred on. Defaults to 1,
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

542
543
544
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
545
546
547
548
549
550
551
552
553
554
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

555
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
556
    def fewshot_context(
557
558
559
        self,
        doc,
        num_fewshot,
560
        rnd=None,
561
        description=None,
lintangsutawika's avatar
lintangsutawika committed
562
    ):
563
564
565
566
567
568
569
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
570
571
572
573
574
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
575
576
577
        :returns: str
            The fewshot context.
        """
578
        if rnd is None:
579
580
581
582
583
584
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
585

586
        description = description if description else ""
587
588

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
589
            labeled_examples = ""
590
        else:
lintangsutawika's avatar
lintangsutawika committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
615
            )
616
617

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
618
        return description + labeled_examples + example
619

620
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
621
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
622
623
        if hasattr(self, "_filters"):
            for f in self._filters:
624
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
625
626
627
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
628

baberabb's avatar
baberabb committed
629
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
630
        """Returns the config as a dictionary."""
631
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
632
        # (num_fewshot)
633
        return self.config.to_dict()
634

Baber Abbasi's avatar
Baber Abbasi committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

675
676
677
678
679
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

680
681
682
683
684
685
686
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
687
688
689
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
690
691
692
693
694
695
696
697
698
699
700
701
702

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

703
704

class ConfigurableTask(Task):
705
    VERSION = "Yaml"
706
    OUTPUT_TYPE = None
707
    CONFIG = None
708
709

    def __init__(
710
711
712
713
714
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
715
    ) -> None:  # TODO no super() call here
716
        # Get pre-configured attributes
717
        self._config = self.CONFIG
718

719
        # Use new configurations if there was no preconfiguration
720
        if self.config is None:
721
            self._config = TaskConfig(**config)
722
723
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
724
            if config is not None:
725
                self._config.__dict__.update(config)
726

727
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
728
729
730
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
731

732
733
734
735
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

736
        if self.config.output_type is not None:
737
738
739
740
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
741
            self.OUTPUT_TYPE = self.config.output_type
742

743
744
745
746
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

747
748
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
749

750
751
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
752

753
754
755
756
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
757

758
        if self.config.metric_list is None:
759
            # TODO: handle this in TaskConfig.__post_init__ ?
760
761
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

762
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
763
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
764
                self._metric_fn_kwargs[metric_name] = {}
765
766
767
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
768
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
769
        else:
770
            for metric_config in self.config.metric_list:
771
772
773
774
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
775
776
777
778
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
779
780
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
781
                }
Chris's avatar
Chris committed
782
783
784
785
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
786

787
                if self.config.process_results is not None:
788
789
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
790
791
792
793
794
795
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
796
797
798
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
799
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
800

801
                if "aggregation" in metric_config:
802
                    agg_name = metric_config["aggregation"]
803
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
804
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
805
                    elif callable(agg_name):  # noqa: E721
806
807
808
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
809
                else:
810
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
811
                    metric_agg = get_metric_aggregation(metric_name)
812
                    eval_logger.warning(
813
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
814
815
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
816
                    )
817
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
818

819
820
821
822
823
824
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
825
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
826
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
827
                        f"higher_is_better={is_higher_better(metric_name)}"
828
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
829
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
830

831
        self.download(self.config.dataset_kwargs)
832
833
834
        self._training_docs = None
        self._fewshot_docs = None

835
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
836
            self._filters = []
837
            for filter_config in self.config.filter_list:
838
839
840
841
842
843
844
845
846
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
847
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
848
        else:
849
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
850

851
852
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
853
            self.prompt = get_prompt(
854
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
855
            )
856
857
858
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
859
        if self.fewshot_docs() is not None:
860
861
862
863
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
864
865
866
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
883

884
        self.task_docs = self.eval_docs
885

886
        # Test One Doc
887
        self.features = list(self.task_docs.features.keys())
888
889
        self.multiple_input = 0
        self.multiple_target = 0
890
        test_doc = self.task_docs[0]
891
        test_text = self.doc_to_text(test_doc)
892
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
893

894
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
895
            test_choice = self.doc_to_choice(test_doc)
896
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
897
                eval_logger.error("doc_to_choice must return list")
898
899
            else:
                num_choice = len(test_choice)
900

901
            if isinstance(test_text, int):
902
                self.multiple_input = num_choice
903
904
        else:
            test_choice = None
905

906
        if isinstance(test_target, list):
907
            self.multiple_target = len(test_target)
908
        else:
909
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
910
                test_target = test_choice[test_target]
911
            else:
lintangsutawika's avatar
lintangsutawika committed
912
                test_target = str(test_target)
913

914
915
916
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
917
            check_choices = [test_target]
918
919
920
921
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
922
923
                    True
                    if self.config.target_delimiter.rstrip()
924
                    != self.config.target_delimiter
925
                    else False
926
                )
927

928
                if delimiter_has_whitespace and choice_has_whitespace:
929
930
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
931
932
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
933
                    eval_logger.debug(
934
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
935
936
                    )

937
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
938
939
940
941
942
943
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
944
    def has_training_docs(self) -> bool:
945
        if self.config.training_split is not None:
946
947
948
949
            return True
        else:
            return False

baberabb's avatar
baberabb committed
950
    def has_validation_docs(self) -> bool:
951
        if self.config.validation_split is not None:
952
953
954
955
            return True
        else:
            return False

baberabb's avatar
baberabb committed
956
    def has_test_docs(self) -> bool:
957
        if self.config.test_split is not None:
958
959
960
961
            return True
        else:
            return False

baberabb's avatar
baberabb committed
962
    def training_docs(self) -> datasets.Dataset:
963
        if self.has_training_docs():
964
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
967
                )
968
            return self.dataset[self.config.training_split]
969

baberabb's avatar
baberabb committed
970
    def validation_docs(self) -> datasets.Dataset:
971
        if self.has_validation_docs():
972
973
974
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
975
                )
976
            return self.dataset[self.config.validation_split]
977

baberabb's avatar
baberabb committed
978
    def test_docs(self) -> datasets.Dataset:
979
        if self.has_test_docs():
980
981
982
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
983

984
    def fewshot_docs(self):
985
        if self.config.fewshot_split is not None:
986
987
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
988
            return self.dataset[self.config.fewshot_split]
989
990
991
992
993
994
995
996
997
998
999
1000
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1001
        else:
1002
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1003
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1004
                    f"[Task: {self.config.task}] "
1005
1006
1007
1008
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1009

KonradSzafer's avatar
KonradSzafer committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1031
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1032
1033
1034
1035
1036
1037
1038
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1039
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1040
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1041
1042
1043
1044
1045
1046
1047
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1048
1049
1050
1051
1052
1053
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1054
1055
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
lintangsutawika's avatar
lintangsutawika committed
1056
1057
1058
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1059
1060
1061
1062
1063
1064
1065

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1066
1067
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1068

KonradSzafer's avatar
KonradSzafer committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1078
        else:
KonradSzafer's avatar
KonradSzafer committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1098
1099

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1100
1101
        if apply_chat_template:
            if self.multiple_input:
1102
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1114
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1128
            return chat_template(labeled_examples)
1129
        else:
KonradSzafer's avatar
KonradSzafer committed
1130
1131
            if self.multiple_input:
                return labeled_examples
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1142

1143
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1144
        """Iterates over FilterEnsembles and applies them to instances"""
1145
1146
        if hasattr(self, "_filters"):
            for f in self._filters:
1147
                f.apply(self._instances)
1148
1149
1150
1151
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1152
    def should_decontaminate(self):
1153
        return self.config.should_decontaminate
1154
1155

    def doc_to_decontamination_query(self, doc):
1156
        if self.config.should_decontaminate:
1157
1158
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1159
            else:
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1171

1172
    def _process_doc(self, doc: dict) -> dict:
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1183
    def doc_to_text(self, doc, doc_to_text=None):
1184
1185
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1186
1187
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1188
        else:
1189
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1190

1191
        if isinstance(doc_to_text, int):
1192
            return doc_to_text
1193
        elif isinstance(doc_to_text, str):
1194
            if doc_to_text in self.features:
1195
                # if self.config.doc_to_choice is not None:
1196
1197
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1198
1199
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1200
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1201
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1202
1203
1204
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1205
        elif callable(doc_to_text):
1206
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1207
        # Used when applying a Promptsource template
1208
        elif hasattr(doc_to_text, "apply"):
1209
1210
1211
1212
1213
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1214
                return self.config.fewshot_delimiter
1215
        else:
1216
            print(type(doc_to_text))
1217
            raise TypeError
1218

Yu Shi Jie's avatar
Yu Shi Jie committed
1219
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1220
1221
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1222
1223
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1224
        else:
1225
            doc_to_target = self.config.doc_to_target
1226

1227
        if isinstance(doc_to_target, int):
1228
            return doc_to_target
1229
        elif isinstance(doc_to_target, str):
1230
            if doc_to_target in self.features:
1231
                # if self.config.doc_to_choice is not None:
1232
1233
1234
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1235
            else:
lintangsutawika's avatar
lintangsutawika committed
1236
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1237
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1238
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1239
1240
1241
1242
1243
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1244
1245
1246
1247
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1248
1249
                else:
                    return target_string
1250
        elif isinstance(doc_to_target, list):
1251
            return doc_to_target
1252
        elif callable(doc_to_target):
1253
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1254
        # Used when applying a Promptsource template
1255
        elif hasattr(doc_to_target, "apply"):
1256
            applied_prompt = doc_to_target.apply(doc)
1257
1258
1259
1260
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1261
                return self.config.fewshot_delimiter
1262
1263
        else:
            raise TypeError
1264

Yu Shi Jie's avatar
Yu Shi Jie committed
1265
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1266
1267
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1268
1269
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1270
        elif self.config.doc_to_choice is None:
1271
1272
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1273
            doc_to_choice = self.config.doc_to_choice
1274

1275
        if isinstance(doc_to_choice, str):
1276
1277
1278
1279
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1280
        elif isinstance(doc_to_choice, list):
1281
            return doc_to_choice
1282
        elif isinstance(doc_to_choice, dict):
1283
1284
1285
1286
1287
1288
1289
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1290

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

baberabb's avatar
baberabb committed
1314
1315
1316
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1317
1318
        aux_arguments = None

1319
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1320
            arguments = (ctx, self.doc_to_target(doc))
1321
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1322
            arguments = (self.doc_to_target(doc),)
1323
        elif self.OUTPUT_TYPE == "multiple_choice":
1324
            choices = self.doc_to_choice(doc)
1325
            target_delimiter = self.config.target_delimiter
1326
1327
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1328
                cont = self.doc_to_target(doc)
1329
1330
1331
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1332
            else:
1333
                # Otherwise they are placed in the continuation
1334
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1367
            request_list = [
1368
1369
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1370
                    doc=doc,
1371
                    arguments=arg,
1372
                    idx=i,
1373
1374
                    **kwargs,
                )
1375
                for i, arg in enumerate(arguments)
1376
            ]
1377
1378

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1379

lintangsutawika's avatar
lintangsutawika committed
1380
        return Instance(
1381
1382
1383
1384
1385
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1386
        )
1387
1388

    def process_results(self, doc, results):
1389
1390
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1391

1392
        result_dict = {}
1393
        use_metric = list(self._metric_fn_list.keys())
1394
1395
1396
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1397
1398
1399
1400
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1401
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1402
            (loglikelihood,) = results
1403
1404
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1405
            return {
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1421
            }
1422
        elif self.OUTPUT_TYPE == "multiple_choice":
1423
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1424

1425
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1426
            choices = self.doc_to_choice(doc)
1427
1428
            completion_len = np.array([float(len(i)) for i in choices])

1429
1430
            if (
                2 * len(choices) == len(lls)
1431
                and "acc_mutual_info" in self._metric_fn_list.keys()
1432
1433
1434
1435
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1436
1437
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1438
1439
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1440

1441
1442
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1443

1444
1445
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1446
            else:
1447
                gold = self.doc_to_target(doc)
1448
1449

            gold_index_error = False
1450
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1451
1452
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1453
1454
                    gold_index_error = True
            else:
1455
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1456
                    gold = gold if gold < len(choices) else -100
1457
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1458
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1459

Lintang Sutawika's avatar
Lintang Sutawika committed
1460
                if gold == -100:
1461
1462
1463
1464
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1465
                    f"Label index was not in within range of available choices,"
1466
1467
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1468

1469
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1470
1471
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1472
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1473
1474
1475
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1476
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1477
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1478

Lintang Sutawika's avatar
Lintang Sutawika committed
1479
1480
1481
1482
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1483
            result_dict = {
1484
                **({"acc": acc} if "acc" in use_metric else {}),
1485
1486
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1487
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1488
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1489
1490
1491
1492
1493
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1494
1495
            }

1496
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1497
1498
1499
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1500
1501
1502
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1503
        elif self.OUTPUT_TYPE == "generate_until":
1504
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1505
            result = results[0]
1506
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1507
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1508
                # it assumes that doc_to_target returns a number.
1509
1510
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1511
1512
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1513
                gold = list(gold)
Baber Abbasi's avatar
Baber Abbasi committed
1514
            elif type(gold) is not type(result):
Chris's avatar
Chris committed
1515
1516
                # cast gold to the same type as result
                gold = type(result)(gold)
1517

lintangsutawika's avatar
lintangsutawika committed
1518
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1519
1520
1521
1522
1523
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1524
1525
1526
1527
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1528
1529
1530
1531
1532
1533
1534
1535
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1536
                    else:
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1558
                else:
1559
                    try:
1560
                        result_score = self._metric_fn_list[metric](
1561
1562
                            references=[gold],
                            predictions=[result],
1563
                            **self._metric_fn_kwargs[metric],
1564
                        )
1565
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1566
                        result_score = self._metric_fn_list[metric]([gold, result])
1567
1568
1569
1570
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1571
        else:
lintangsutawika's avatar
lintangsutawika committed
1572
1573
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1574
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1575
            )
1576
1577
1578

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1579
    def aggregation(self) -> dict:
1580
1581
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1582
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1583
        return self._higher_is_better
1584

Baber Abbasi's avatar
Baber Abbasi committed
1585
1586
1587
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1588
1589
1590
1591
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1592
1593
1594
1595
1596
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1597
            f"num_samples={len(self.eval_docs)})"
1598
1599
        )

1600
1601

class MultipleChoiceTask(Task):
1602
    OUTPUT_TYPE = "loglikelihood"
1603

baberabb's avatar
baberabb committed
1604
    def doc_to_target(self, doc: dict) -> str:
1605
1606
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1607
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1608
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1609
1610
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1611
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1612
                doc=doc,
1613
                arguments=(ctx, " {}".format(choice)),
1614
                idx=i,
1615
1616
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1617
1618
            for i, choice in enumerate(doc["choices"])
        ]
1619

1620
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1621
1622
1623
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1635
    def higher_is_better(self) -> dict:
1636
1637
1638
1639
1640
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1641
    def aggregation(self) -> dict:
1642
1643
1644
1645
1646
1647
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1648
class PerplexityTask(Task):
1649
1650
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1651
    def has_training_docs(self) -> bool:
1652
1653
        return False

baberabb's avatar
baberabb committed
1654
    def fewshot_examples(self, k: int, rnd) -> List:
1655
1656
1657
1658
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1659
1660
        return []

baberabb's avatar
baberabb committed
1661
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1662
1663
1664
1665
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1666
1667
1668

        return ""

baberabb's avatar
baberabb committed
1669
    def higher_is_better(self) -> dict:
1670
1671
1672
1673
1674
1675
1676
1677
1678
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1679
    def doc_to_text(self, doc) -> str:
1680
1681
1682
1683
1684
        return ""

    def doc_to_target(self, doc):
        return doc

1685
1686
1687
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1688

lintangsutawika's avatar
lintangsutawika committed
1689
1690
1691
1692
1693
1694
1695
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1696

1697
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1698
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1699
1700
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1701
1702
1703
1704
1705
1706
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1707
    def aggregation(self) -> dict:
1708
1709
1710
1711
1712
1713
1714
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1715
    def count_bytes(cls, doc) -> int:
1716
1717
1718
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1719
    def count_words(cls, doc) -> int:
1720
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1721
        return len(re.split(r"\s+", doc))