"examples/multimodal/run_text_generation.py" did not exist on "3aca141586a4b8cdc983c3ecf5f7baf60506c7f8"
task.py 60.7 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
import re
Baber's avatar
Baber committed
8
from collections.abc import Callable, Iterable, Iterator, Mapping
9
from copy import deepcopy
10
from functools import cached_property
Baber's avatar
Baber committed
11
from typing import TYPE_CHECKING, Any, Literal, overload
12
13
14

import datasets
import numpy as np
15
from tqdm import tqdm
Baber's avatar
Baber committed
16
from typing_extensions import deprecated
17
18

from lm_eval import utils
19
20
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
21
from lm_eval.api.utils import check_gold_index_error
22
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
23
from lm_eval.config.metric import MetricConfig
Baber's avatar
Baber committed
24
from lm_eval.config.task import DataSet, TaskConfig
25
26
from lm_eval.filters import build_filter_ensemble

27

28
29
30
31
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
32
    "generate_until",
33
34
]

Baber's avatar
cleanup  
Baber committed
35
if TYPE_CHECKING:
Baber's avatar
Baber committed
36
    pass
37

38

Lintang Sutawika's avatar
Lintang Sutawika committed
39
eval_logger = logging.getLogger(__name__)
40

41
42
43
44
45
46
47
48
49
50
51

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
cleanup  
Baber committed
52
    VERSION: int | str | None = None
53

54
55
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
cleanup  
Baber committed
56
    DATASET_PATH: str | None = None
57
58

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
cleanup  
Baber committed
59
    DATASET_NAME: str | None = None
60

Baber's avatar
cleanup  
Baber committed
61
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
62

63
64
    def __init__(
        self,
Baber's avatar
cleanup  
Baber committed
65
66
67
68
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
69
    ) -> None:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
cleanup  
Baber committed
92
93
94
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
95

96
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
97

98
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
cleanup  
Baber committed
99
        self.fewshot_rnd: random.Random | None = (
100
101
            None  # purposely induce errors in case of improper usage
        )
102

103
104
    def download(
        self,
Baber's avatar
cleanup  
Baber committed
105
106
        data_dir: str | None = None,
        cache_dir: str | None = None,
107
108
        download_mode=None,
    ) -> None:
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
Baber's avatar
Baber committed
133
        assert self.DATASET_PATH is not None, "DATASET_PATH must be set in Task class"
134
135
136
137
138
139
140
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
141

142
    @property
143
    def config(self) -> TaskConfig:
144
145
146
        """Returns the TaskConfig associated with this class."""
        return self._config

147
    @property
Baber's avatar
Baber committed
148
    def has_training_docs(self) -> bool:
149
        """Whether the task has a training set"""
Baber's avatar
Baber committed
150
        raise NotImplementedError
151

152
    @property
Baber's avatar
Baber committed
153
    def has_validation_docs(self) -> bool:
154
        """Whether the task has a validation set"""
Baber's avatar
Baber committed
155
        raise NotImplementedError
156

157
    @property
Baber's avatar
Baber committed
158
    def has_test_docs(self) -> bool:
159
        """Whether the task has a test set"""
Baber's avatar
Baber committed
160
        raise NotImplementedError
161

Baber's avatar
Baber committed
162
    def training_docs(self) -> DataSet | None:
163
164
165
166
167
168
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
169
    def validation_docs(self) -> DataSet | None:
170
171
172
173
174
175
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
176
    def test_docs(self) -> DataSet | None:
177
178
179
180
181
182
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
183
    def fewshot_docs(self) -> DataSet | None:
184
185
186
187
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
188
        if self.has_training_docs:
189
            return self.training_docs()
190
        elif self.has_validation_docs:
191
192
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
193
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
194
195
196
197
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
198
199
            return self.test_docs()

200
    def _process_doc(self, doc: dict) -> dict:
201
202
203
204
205
206
207
208
209
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
210

211
    @property
Baber's avatar
cleanup  
Baber committed
212
    def instances(self) -> list[Instance]:
213
214
215
216
217
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

218
    def fewshot_examples(self, k: int, rnd) -> Iterable[dict]:
219
220
221
222
223
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
cleanup  
Baber committed
224
    def doc_to_decontamination_query(self, doc: dict):
225
        raise NotImplementedError(
226
227
228
229
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
230
    def doc_to_text(self, doc: dict) -> str:
231
232
233
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
234
    def doc_to_target(self, doc: dict) -> str | int:
235
236
        pass

237
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
cleanup  
Baber committed
238
    def doc_to_image(self, doc: dict):
239
240
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
241
    def doc_to_audio(self, doc: dict):
242
243
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
244
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
245
246
        return ""

247
248
    def build_all_requests(
        self,
249
        *,
Baber's avatar
cleanup  
Baber committed
250
251
        limit: int | None = None,
        samples: list[int] | None = None,
252
253
254
255
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
cleanup  
Baber committed
256
        system_instruction: str | None = None,
257
258
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
259
        chat_template: Callable | None = None,
260
        tokenizer_name: str = "",
261
    ) -> None:
262
        """Build a set of Instances for a task, and store them in task.instances"""
263
264
265
266

        # used with caching
        og_limit = limit

267
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
268
269
270
271
272
273
274
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
275
        cache_key += f"-tokenizer{tokenizer_name}"
276

Baber Abbasi's avatar
Baber Abbasi committed
277
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
278
279
280
281
282
283
284
285
286
287
288
289
290

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
291
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
292

293
        instances = []
294
295
296
297
298
299
300
301
302
303

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
304
305
306
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
307
308
309
310
311
312
313
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
314
        ):
315
            # sample fewshot context #TODO: need to offset doc_id by rank now!
316
            fewshot_ctx = self.fewshot_context(
317
                doc,
318
319
320
321
322
323
324
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
325
                gen_prefix=self.doc_to_prefix(doc),
326
            )
327

328
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
329
330
331
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
332
                metadata=(self.config.task, doc_id, self.config.repeats),
333
                apply_chat_template=apply_chat_template,
334
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
335
            )
336
337
338
339

            if not isinstance(inst, list):
                inst = [inst]

340
341
342
343
344
345
346
347
348
349
350
351
352
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
353

354
355
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
356

357
358
359
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

360
    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
361
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
376
            The number of times each instance in a dataset is inferred on. Defaults to 1,
377
378
379
380
            can be increased for techniques like majority voting.
        """

    @abc.abstractmethod
381
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
382
383
384
385
386
387
388
389
390
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
391
        raise NotImplementedError
392

Baber's avatar
Baber committed
393
    @deprecated("not used anymore")
394
395
396
397
398
399
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
cleanup  
Baber committed
400
        return True
401

Baber's avatar
Baber committed
402
    @deprecated("not used anymore")
403
404
405
406
407
408
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
cleanup  
Baber committed
409
        return True
410

411
412
413
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
414
    @classmethod
Baber's avatar
Baber committed
415
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
416
417
418
419
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
420
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
421
422
423
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

424
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
425
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
426
427
428
429
430
431
432
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
433
434
435
436
437
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
438
439
440
        :returns: str
            The fewshot context.
        """
441
        if rnd is None:
442
443
444
445
446
447
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
448

449
        description = description if description else ""
450
451

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
452
            labeled_examples = ""
453
        else:
lintangsutawika's avatar
lintangsutawika committed
454
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
455
            if self.has_training_docs:
lintangsutawika's avatar
lintangsutawika committed
456
457
458
459
460
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
461
                        if self.has_validation_docs
lintangsutawika's avatar
lintangsutawika committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
478
            )
479
480

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
481
        return description + labeled_examples + example
482

Baber's avatar
cleanup  
Baber committed
483
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
484
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
cleanup  
Baber committed
485
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
486
            for f in self._filters:
487
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
488
        else:
Baber's avatar
cleanup  
Baber committed
489
490
491
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
492
            return self._instances
493

baberabb's avatar
baberabb committed
494
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
495
        """Returns the config as a dictionary."""
496
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
497
        # (num_fewshot)
498
        return self.config.to_dict()
499

Baber Abbasi's avatar
Baber Abbasi committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
519
520
521
522
523
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
Baber's avatar
Baber committed
524
525
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
526

Baber's avatar
cleanup  
Baber committed
527
    def set_fewshot_seed(self, seed: int | None = None) -> None:
528
529
530
531
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

532
    @property
Baber's avatar
cleanup  
Baber committed
533
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
534
        if self.has_test_docs:
535
            return self.test_docs()
536
        elif self.has_validation_docs:
537
538
            return self.validation_docs()
        else:
539
540
541
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
542
543

    def doc_iterator(
544
545
546
        self,
        *,
        rank: int = 0,
Baber's avatar
cleanup  
Baber committed
547
        limit: int | None = None,
548
        world_size: int = 1,
Baber's avatar
cleanup  
Baber committed
549
550
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
551
552
        if samples:
            n = len(self.eval_docs)
Baber's avatar
cleanup  
Baber committed
553
            assert all(e < n for e in samples), (
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
573
574
        return doc_iterator

575
576

class ConfigurableTask(Task):
577
    VERSION = "Yaml"
578
    OUTPUT_TYPE = None
579
    CONFIG = None
580
581

    def __init__(
582
583
584
585
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
Baber committed
586
        config: Mapping[str, Any] | None = None,
Baber's avatar
Baber committed
587
    ) -> None:
588
        # Get pre-configured attributes
589
        self._config = self.CONFIG
590

591
        # Use new configurations if there was no preconfiguration
592
        if self.config is None:
593
            self._config = TaskConfig.from_yaml(config)
594
595
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
596
            if config is not None:
597
                self._config.__dict__.update(config)
598

599
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
600
601
602
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
603

Baber's avatar
cleanup  
Baber committed
604
605
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
606

607
        if self.config.output_type is not None:
608
609
610
611
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
612
            self.OUTPUT_TYPE = self.config.output_type
613

614
615
616
617
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

618
619
620
621
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
622
623
624
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

625
626
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
627

628
629
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
630

631
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
632

633
        self.download(self.config.dataset_kwargs)
634
635
636
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
637
        self._filters = self.config.get_filters
lintangsutawika's avatar
lintangsutawika committed
638

Baber's avatar
Baber committed
639
640
641
642
643
644
645
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
646

647
648
649
650
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
651
652
653
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
Baber Abbasi's avatar
Baber Abbasi committed
654
            )
655
        self.task_docs = self.eval_docs
656

Baber's avatar
Baber committed
657
658
659
660
661
662
663
664
665
666
        # for name, fn in self.config._fn.items():
        #     if hasattr(self, name):
        #         setattr(
        #             self,
        #             name,
        #             types.MethodType(
        #                 lambda self, *args, _fn=fn, **kwargs: _fn(*args, **kwargs),
        #                 self,
        #             ),
        #         )
667

Baber's avatar
Baber committed
668
        self.runtime_checks(self.task_docs[0])
669

Baber Abbasi's avatar
Baber Abbasi committed
670
    def download(
Baber's avatar
cleanup  
Baber committed
671
        self, dataset_kwargs:dict[str, Any] | None = None, **kwargs
Baber Abbasi's avatar
Baber Abbasi committed
672
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
673
674
        from packaging.version import parse as vparse

675
676
677
678
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
Baber Abbasi's avatar
Baber Abbasi committed
679
680
        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
681
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
682
683
684
685
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
686
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
687
        else:
Baber's avatar
Baber committed
688
689
690
            assert self.config.dataset_path is not None, (
                "dataset_path must be set in TaskConfig"
            )
Baber Abbasi's avatar
Baber Abbasi committed
691
            self.dataset = datasets.load_dataset(
692
693
694
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
695
            )
696

697
    @cached_property
baberabb's avatar
baberabb committed
698
    def has_training_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
699
        return self.config.training_split is not None
700

701
    @cached_property
baberabb's avatar
baberabb committed
702
    def has_validation_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
703
        return self.config.validation_split is not None
704

705
    @cached_property
baberabb's avatar
baberabb committed
706
    def has_test_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
707
        return self.config.test_split is not None
708

Baber's avatar
Baber committed
709
    def training_docs(self) -> DataSet | None:
710
        if self.has_training_docs:
711
712
713
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
714
                )
715
            return self.dataset[self.config.training_split]
716

Baber's avatar
Baber committed
717
    def validation_docs(self) -> DataSet | None:
718
        if self.has_validation_docs:
719
720
721
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
722
                )
723
            return self.dataset[self.config.validation_split]
724

Baber's avatar
Baber committed
725
    def test_docs(self) -> DataSet | None:
726
        if self.has_test_docs:
727
728
729
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
730

731
    def fewshot_docs(self):
Baber's avatar
Baber committed
732
733
734
735
736
737
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
cleanup  
Baber committed
738
739
740
741
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
742
        ):
Baber's avatar
cleanup  
Baber committed
743
744
745
746
747
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
748
749

        return super().fewshot_docs()
750

KonradSzafer's avatar
KonradSzafer committed
751
752
    @staticmethod
    def append_target_question(
Baber's avatar
cleanup  
Baber committed
753
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
754
755
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
756
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
757
758
759
760
761
762
763
764
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
765
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
766
767
            # if last message is user, append to it to avoid two user messages in a row
            else:
768
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
769
770
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
771
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
772
773
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
774

lintangsutawika's avatar
lintangsutawika committed
775
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
776
777
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
778
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
779
        num_fewshot: int,
Baber's avatar
cleanup  
Baber committed
780
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
781
782
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
783
784
785
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
786
787
788
789
790
791
792
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
793
794
795
796
797
798
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
799
800
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
801
802
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
803
804
805
        :returns: str
            The fewshot context.
        """
Baber's avatar
cleanup  
Baber committed
806
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
807
808

        # get task description
809
        if description := self.config.description:
Baber's avatar
Baber committed
810
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
811

KonradSzafer's avatar
KonradSzafer committed
812
813
814
815
816
817
818
819
820
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
821
        else:
KonradSzafer's avatar
KonradSzafer committed
822
823
824
825
826
827
828
829
830
831
832
833
834
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
835
836
837
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
838
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
839
840
841
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
842
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
843
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
844
                )
lintangsutawika's avatar
lintangsutawika committed
845
846

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
847
848
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
849
                # TODO: append prefill?
850
851
                if not labeled_examples:
                    return ""
852
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
853
854
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
855
856
857
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
858
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
859
860
861
862
863
864
865
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
866
867
868
869
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
870
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
871
872
873
874
875
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
cleanup  
Baber committed
876
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
877
878
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
879
880
881
882
883
884
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
885
886
887
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
888
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
889
890
891
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
892
893
894
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
895
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
896
897
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
898
899
            return chat_template(
                labeled_examples,
Baber's avatar
cleanup  
Baber committed
900
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
901
            )
902
        else:
Baber Abbasi's avatar
Baber Abbasi committed
903
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
904
905
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
906
907
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
908
909
            if self.multiple_input:
                return labeled_examples
910
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
911
                return labeled_examples + example + prefix
912
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
913
                return [labeled_examples + ex + prefix for ex in example]
914
915
916
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
917
                    return labeled_examples + choices[example] + prefix
918
                else:
Baber Abbasi's avatar
Baber Abbasi committed
919
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
920

Baber's avatar
cleanup  
Baber committed
921
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
922
        """Iterates over FilterEnsembles and applies them to instances"""
923
        if hasattr(self, "_filters") and self._instances:
924
            for f in self._filters:
925
                f.ensemble.apply(self._instances)
926
        else:
927
928
929
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
930
931
            return self._instances

932
    def should_decontaminate(self):
933
        return self.config.should_decontaminate
934

Baber Abbasi's avatar
Baber Abbasi committed
935
    def doc_to_decontamination_query(self, doc: dict):
936
        if self.config.should_decontaminate:
937
938
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
939
            else:
940
941
942
943
944
945
946
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
Baber's avatar
Baber committed
947
                        utils.apply_template(
948
949
950
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
951

952
    def _process_doc(self, doc: dict) -> dict:
953
954
955
956
957
958
959
960
961
962
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
963
964
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...
lintangsutawika's avatar
lintangsutawika committed
965

Baber's avatar
Baber committed
966
967
968
969
970
971
972
973
974
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

975
976
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
977
    ) -> str | int:
Baber's avatar
Baber committed
978
979
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
980
        doc_to_text = doc_to_text or self.config.doc_to_text
Baber's avatar
Baber committed
981
982
        if callable(doc_to_text):
            return doc_to_text(doc)
983
984
        if doc_to_text in doc:
            return doc[doc_to_text]
985
        elif isinstance(doc_to_text, str):
986
987
988
            text_string = utils.apply_template(doc_to_text, doc)
            if text_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(text_string)
989
            else:
990
991
992
                return text_string
        elif isinstance(doc_to_text, int):
            return doc_to_text
lintangsutawika's avatar
lintangsutawika committed
993
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
994
995
996
997
998
999
1000
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1001
        else:
1002
            print(type(doc_to_text))
1003
            raise TypeError
1004

Baber's avatar
Baber committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
cleanup  
Baber committed
1024
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1025
1026
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
1027
        doc_to_target = doc_to_target or self.config.doc_to_target
Baber's avatar
Baber committed
1028
1029
        if callable(doc_to_target):
            doc_to_target(doc)
1030
1031
        if doc_to_target in doc:
            return doc[doc_to_target]
1032
        elif isinstance(doc_to_target, str):
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
            target_string = utils.apply_template(doc_to_target, doc)
            if target_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(target_string)
            # elif (
            #     len(target_string) >= 2
            #     and (target_string[0] == "[")
            #     and (target_string[-1] == "]")
            # ):
            #     try:
            #         return ast.literal_eval(target_string)
            #     except (SyntaxError, ValueError):
            #         return target_string
1045
            else:
1046
1047
1048
                return target_string

        elif isinstance(doc_to_target, (int, list)):
1049
            return doc_to_target
1050
1051
1052
1053
        # elif isinstance(doc_to_target, list):
        #     return doc_to_target
        # elif callable(doc_to_target):
        #     return doc_to_target(doc)
Baber's avatar
Baber committed
1054
1055
1056
1057
1058
1059
1060
1061
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1062
1063
        else:
            raise TypeError
1064

Baber's avatar
Baber committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
cleanup  
Baber committed
1082
    def doc_to_choice(
Baber's avatar
Baber committed
1083
1084
        self,
        doc: dict,
Baber's avatar
cleanup  
Baber committed
1085
1086
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1087
1088
1089
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1090
            doc_to_choice = doc_to_choice
1091
        elif self.config.doc_to_choice is None:
1092
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1093
            doc_to_choice = None
1094
        else:
1095
            doc_to_choice = self.config.doc_to_choice
1096

1097
        if isinstance(doc_to_choice, str):
1098
            if doc_to_choice in doc:
1099
1100
                return doc[doc_to_choice]
            else:
Baber's avatar
Baber committed
1101
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1102
        elif isinstance(doc_to_choice, list):
1103
            return doc_to_choice
1104
1105
        # elif isinstance(doc_to_choice, dict):
        #     return list(doc_to_choice.values())
Baber's avatar
Baber committed
1106
1107
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1108
1109
        else:
            raise TypeError
1110

Baber's avatar
Baber committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
1123
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
Baber's avatar
Baber committed
1140
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
1141
1142
1143
1144
1145
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
1158
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
Baber's avatar
Baber committed
1175
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
1176
1177
1178
1179
1180
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
cleanup  
Baber committed
1181
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1182
        if (gen_prefix := self.config.gen_prefix) is not None:
1183
            if gen_prefix in doc:
Baber Abbasi's avatar
Baber Abbasi committed
1184
1185
                return doc[gen_prefix]
            else:
Baber's avatar
Baber committed
1186
                return utils.apply_template(gen_prefix, doc)
Baber Abbasi's avatar
Baber Abbasi committed
1187
1188
        return None

baberabb's avatar
baberabb committed
1189
1190
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
cleanup  
Baber committed
1191
    ) -> list[Instance] | Instance:
1192
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1193
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1194

1195
1196
        aux_arguments = None

1197
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1198
            arguments = (ctx, self.doc_to_target(doc))
1199
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1200
            arguments = (self.doc_to_target(doc),)
1201
        elif self.OUTPUT_TYPE == "multiple_choice":
1202
            choices = self.doc_to_choice(doc)
1203
            target_delimiter = self.config.target_delimiter
1204
1205
            if apply_chat_template:
                target_delimiter = ""
1206
1207
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1208
                # apply chat_template to choices if apply_chat_template
1209
                cont = self.doc_to_target(doc)
1210

1211
                arguments = [
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1222
                ]
1223
            else:
1224
                # Otherwise they are placed in the continuation
1225
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1226

1227
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1228
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1229
1230
1231
1232
1233
1234
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1235
1236
1237
1238
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1251
                "visual": self.doc_to_image(doc),
1252
1253
            }

1254
1255
1256
1257
1258
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1259
                "audio": self.doc_to_audio(doc),
1260
1261
            }

1262
1263
1264
1265
1266
1267
1268
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1269
            request_list = [
1270
1271
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1272
                    doc=doc,
1273
                    arguments=arg,
1274
                    idx=i,
1275
1276
                    **kwargs,
                )
1277
                for i, arg in enumerate(arguments)
1278
            ]
1279
1280

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1281

lintangsutawika's avatar
lintangsutawika committed
1282
        return Instance(
1283
1284
1285
1286
1287
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1288
        )
1289

1290
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
1291
1292
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
1293
        result_dict = {}
1294
        use_metric = list(m.metric_name for m in self.config._metric_list)
1295
1296
1297
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1298
1299
1300
1301
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1302
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1303
1304
1305
1306
1307
1308
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1309
            return {
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1325
            }
1326
        elif self.OUTPUT_TYPE == "multiple_choice":
1327
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1328

Baber's avatar
cleanup  
Baber committed
1329
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1330
            choices = self.doc_to_choice(doc)
1331
1332
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1333
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1334
1335
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1336
1337
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1338
1339
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1340
                # and this stores our "regular" conditional loglikelihoods
1341
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1342
1343
            else:
                lls_unconditional = None
1344

1345
1346
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1347

1348
1349
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1350
            else:
1351
                gold = self.doc_to_target(doc)
1352

1353
            gold, gold_index_error = check_gold_index_error(choices, gold)
1354
1355
1356

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1357
                    f"Label index was not in within range of available choices,"
1358
1359
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1360

1361
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1362
1363
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
cleanup  
Baber committed
1364
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1365
1366
1367
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1368
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1369
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1370

Lintang Sutawika's avatar
Lintang Sutawika committed
1371
1372
1373
1374
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1375
            result_dict = {
1376
                **({"acc": acc} if "acc" in use_metric else {}),
1377
1378
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1379
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1380
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1381
1382
1383
1384
1385
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1386
1387
            }

1388
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1389
1390
1391
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1392
1393
1394
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1395
1396
1397
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1398
        elif self.OUTPUT_TYPE == "generate_until":
1399
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1400
            result = results[0]
Baber's avatar
Baber committed
1401
            for metric in self.config._metric_list:
1402
                try:
Baber's avatar
Baber committed
1403
                    result_score = metric.fn(
1404
1405
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1406
                        **metric.kwargs,
1407
1408
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1409
                    result_score = metric.fn([gold, result])
1410
1411
1412
1413
1414
1415
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
Baber's avatar
Baber committed
1416
                    result_dict[metric.name] = result_score
1417
        else:
lintangsutawika's avatar
lintangsutawika committed
1418
1419
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1420
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1421
            )
1422
1423
1424

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1425
    def aggregation(self) -> dict:
1426
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1427

Baber Abbasi's avatar
Baber Abbasi committed
1428
    def higher_is_better(self) -> dict:
1429
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1430

Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
1433
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1434
    @property
Baber's avatar
cleanup  
Baber committed
1435
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1436
1437
        return getattr(self.config, "task", None)

Baber's avatar
Baber committed
1438
1439
1440
1441
    def runtime_checks(self, test_doc):
        # Test One Doc
        self.features: list[str] = list(self.task_docs.features.keys())
        self.multiple_target = 0
Baber's avatar
Baber committed
1442
        self.multiple_input = 0
Baber's avatar
Baber committed
1443
1444
1445
1446
1447
1448
1449
        test_text = self.doc_to_text(test_doc)
        test_target = self.doc_to_target(test_doc)

        if self.config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if not isinstance(test_choice, list):
                eval_logger.error("doc_to_choice must return list")
Baber's avatar
Baber committed
1450
1451
1452
1453
1454
1455
1456
            else:
                num_choice = len(test_choice)

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
Baber committed
1457
1458
1459
1460
1461

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
Baber committed
1462
                self.multiple_input = num_choice
Baber's avatar
Baber committed
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        else:
            test_choice = None

        if isinstance(test_target, list):
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
            self.multiple_target = len(test_target)
        else:
            if (isinstance(test_target, int)) and (test_choice is not None):
                test_target = test_choice[test_target]
            else:
                test_target = str(test_target)

        check_choices = test_choice if test_choice is not None else [test_target]
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = choice[0].isspace()
                delimiter_has_whitespace = (
                    self.config.target_delimiter.rstrip()
                    != self.config.target_delimiter
                )

                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

1495
1496
1497
1498
1499
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1500
            f"num_samples={len(self.eval_docs)})"
1501
1502
        )

1503
1504

class MultipleChoiceTask(Task):
1505
    OUTPUT_TYPE = "loglikelihood"
1506

baberabb's avatar
baberabb committed
1507
    def doc_to_target(self, doc: dict) -> str:
1508
1509
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
cleanup  
Baber committed
1510
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1511
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1512
1513
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1514
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1515
                doc=doc,
Baber's avatar
Baber committed
1516
                arguments=(ctx, f" {choice}"),
1517
                idx=i,
1518
1519
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1520
1521
            for i, choice in enumerate(doc["choices"])
        ]
1522

Baber's avatar
cleanup  
Baber committed
1523
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1524
1525
1526
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1538
    def higher_is_better(self) -> dict:
1539
1540
1541
1542
1543
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1544
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1545
1546
        from lm_eval.api.metrics import mean

1547
1548
1549
1550
1551
1552
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1553
class PerplexityTask(Task):
1554
1555
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1556
    def has_training_docs(self) -> bool:
1557
1558
        return False

Baber's avatar
cleanup  
Baber committed
1559
    def fewshot_examples(self, k: int, rnd) -> list:
1560
1561
1562
1563
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1564
1565
        return []

baberabb's avatar
baberabb committed
1566
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1567
1568
1569
1570
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1571
1572
1573

        return ""

baberabb's avatar
baberabb committed
1574
    def higher_is_better(self) -> dict:
1575
1576
1577
1578
1579
1580
1581
1582
1583
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1584
    def doc_to_text(self, doc) -> str:
1585
1586
1587
1588
1589
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
cleanup  
Baber committed
1590
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1591
1592
        if bool(ctx):
            raise ValueError
1593

lintangsutawika's avatar
lintangsutawika committed
1594
1595
1596
1597
1598
1599
1600
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1601

Baber's avatar
cleanup  
Baber committed
1602
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1603
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1604
1605
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1606
1607
1608
1609
1610
1611
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1612
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1613
1614
        from lm_eval.api.metrics import bits_per_byte, weighted_perplexity

1615
1616
1617
1618
1619
1620
1621
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1622
    def count_bytes(cls, doc) -> int:
1623
1624
1625
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1626
    def count_words(cls, doc) -> int:
1627
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1628
        return len(re.split(r"\s+", doc))