task.py 63.4 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
325
            eval_logger.warning(
326
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
327
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
328
            )
329
330
            return self.test_docs()

331
    def _process_doc(self, doc: dict) -> dict:
332
333
334
335
336
337
338
339
340
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
341

342
    @property
343
    def instances(self) -> List[Instance]:
344
345
346
347
348
349
350
351
352
353
354
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

355
356
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
357
358
359
360
361
362
363
364
365
366
367
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

368
369
    def build_all_requests(
        self,
370
        *,
371
372
373
374
375
376
377
378
379
380
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
381
    ) -> None:
382
        """Build a set of Instances for a task, and store them in task.instances"""
383
384
385
386

        # used with caching
        og_limit = limit

387
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
388
389
390
391
392
393
394
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
395
        cache_key += f"-tokenizer{tokenizer_name}"
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
411
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
412

413
        instances = []
414
415
416
417
418
419
420
421
422
423

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
424
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
425
426
427
428
429
430
431
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
432
        ):
433
            # sample fewshot context #TODO: need to offset doc_id by rank now!
434
            fewshot_ctx = self.fewshot_context(
435
                doc,
436
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
437
438
439
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
440
                chat_template,
441
            )
442

443
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
444
445
446
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
447
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
448
            )
449
450
451
452

            if not isinstance(inst, list):
                inst = [inst]

453
454
455
456
457
458
459
460
461
462
463
464
465
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
466

467
468
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
469

470
471
472
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
489
            The number of times each instance in a dataset is inferred on. Defaults to 1,
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

525
526
527
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
528
529
530
531
532
533
534
535
536
537
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

538
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
539
    def fewshot_context(
540
541
542
        self,
        doc,
        num_fewshot,
543
        rnd=None,
544
        description=None,
lintangsutawika's avatar
lintangsutawika committed
545
    ):
546
547
548
549
550
551
552
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
553
554
555
556
557
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
558
559
560
        :returns: str
            The fewshot context.
        """
561
        if rnd is None:
562
563
564
565
566
567
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
568

569
        description = description if description else ""
570
571

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
572
            labeled_examples = ""
573
        else:
lintangsutawika's avatar
lintangsutawika committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
598
            )
599
600

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
601
        return description + labeled_examples + example
602

603
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
604
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
605
606
        if hasattr(self, "_filters"):
            for f in self._filters:
607
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
608
609
610
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
611

baberabb's avatar
baberabb committed
612
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
613
        """Returns the config as a dictionary."""
614
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
615
        # (num_fewshot)
616
        return self.config.to_dict()
617

Baber Abbasi's avatar
Baber Abbasi committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

658
659
660
661
662
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

663
664
665
666
667
668
669
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
670
671
672
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
673
674
675
676
677
678
679
680
681
682
683
684
685

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

686
687

class ConfigurableTask(Task):
688
    VERSION = "Yaml"
689
    OUTPUT_TYPE = None
690
    CONFIG = None
691
692

    def __init__(
693
694
695
696
697
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
698
    ) -> None:  # TODO no super() call here
699
        # Get pre-configured attributes
700
        self._config = self.CONFIG
701

702
        # Use new configurations if there was no preconfiguration
703
        if self.config is None:
704
            self._config = TaskConfig(**config)
705
706
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
707
            if config is not None:
708
                self._config.__dict__.update(config)
709

710
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
711
712
713
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
714

715
716
717
718
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

719
        if self.config.output_type is not None:
720
721
722
723
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
724
            self.OUTPUT_TYPE = self.config.output_type
725

726
727
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
728

729
730
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
731

732
733
734
735
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
736

737
        if self.config.metric_list is None:
738
            # TODO: handle this in TaskConfig.__post_init__ ?
739
740
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

741
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
742
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
743
                self._metric_fn_kwargs[metric_name] = {}
744
745
746
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
747
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
748
        else:
749
            for metric_config in self.config.metric_list:
750
751
752
753
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
754
755
756
757
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
758
759
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
760
                }
Chris's avatar
Chris committed
761
762
763
764
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
765

766
                if self.config.process_results is not None:
767
768
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
769
770
771
772
773
774
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
775
776
777
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
778
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
779

780
                if "aggregation" in metric_config:
781
                    agg_name = metric_config["aggregation"]
782
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
783
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
784
                    elif callable(agg_name):  # noqa: E721
785
786
787
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
788
                else:
789
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
790
                    metric_agg = get_metric_aggregation(metric_name)
791
                    eval_logger.warning(
792
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
793
794
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
795
                    )
796
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
797

798
799
800
801
802
803
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
804
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
805
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
806
                        f"higher_is_better={is_higher_better(metric_name)}"
807
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
808
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
809

810
        self.download(self.config.dataset_kwargs)
811
812
813
        self._training_docs = None
        self._fewshot_docs = None

814
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
815
            self._filters = []
816
            for filter_config in self.config.filter_list:
817
818
819
820
821
822
823
824
825
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
826
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
827
        else:
828
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
829

830
831
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
832
            self.prompt = get_prompt(
833
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
834
            )
835
836
837
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
838
        if self.fewshot_docs() is not None:
839
840
841
842
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
843
844
845
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
862

863
        self.task_docs = self.eval_docs
864

865
        # Test One Doc
866
        self.features = list(self.task_docs.features.keys())
867
868
        self.multiple_input = 0
        self.multiple_target = 0
869
        test_doc = self.task_docs[0]
870
        test_text = self.doc_to_text(test_doc)
871
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
872

873
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
874
            test_choice = self.doc_to_choice(test_doc)
875
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
876
                eval_logger.error("doc_to_choice must return list")
877
878
            else:
                num_choice = len(test_choice)
879

880
            if isinstance(test_text, int):
881
                self.multiple_input = num_choice
882
883
        else:
            test_choice = None
884

885
        if isinstance(test_target, list):
886
            self.multiple_target = len(test_target)
887
        else:
888
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
889
                test_target = test_choice[test_target]
890
            else:
lintangsutawika's avatar
lintangsutawika committed
891
                test_target = str(test_target)
892

893
894
895
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
896
            check_choices = [test_target]
897
898
899
900
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
901
902
                    True
                    if self.config.target_delimiter.rstrip()
903
                    != self.config.target_delimiter
904
                    else False
905
                )
906

907
                if delimiter_has_whitespace and choice_has_whitespace:
908
909
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
910
911
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
912
                    eval_logger.debug(
913
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
914
915
                    )

916
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
917
918
919
920
921
922
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
923
    def has_training_docs(self) -> bool:
924
        if self.config.training_split is not None:
925
926
927
928
            return True
        else:
            return False

baberabb's avatar
baberabb committed
929
    def has_validation_docs(self) -> bool:
930
        if self.config.validation_split is not None:
931
932
933
934
            return True
        else:
            return False

baberabb's avatar
baberabb committed
935
    def has_test_docs(self) -> bool:
936
        if self.config.test_split is not None:
937
938
939
940
            return True
        else:
            return False

baberabb's avatar
baberabb committed
941
    def training_docs(self) -> datasets.Dataset:
942
        if self.has_training_docs():
943
944
945
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
946
                )
947
            return self.dataset[self.config.training_split]
948

baberabb's avatar
baberabb committed
949
    def validation_docs(self) -> datasets.Dataset:
950
        if self.has_validation_docs():
951
952
953
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
954
                )
955
            return self.dataset[self.config.validation_split]
956

baberabb's avatar
baberabb committed
957
    def test_docs(self) -> datasets.Dataset:
958
        if self.has_test_docs():
959
960
961
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
962

963
    def fewshot_docs(self):
964
        if self.config.fewshot_split is not None:
965
966
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
967
            return self.dataset[self.config.fewshot_split]
968
969
970
971
972
973
974
975
976
977
978
979
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
980
        else:
981
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
982
                eval_logger.warning(
983
                    f"Task '{self.config.task}': "
984
985
986
987
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
988

KonradSzafer's avatar
KonradSzafer committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1010
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1011
1012
1013
1014
1015
1016
1017
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1018
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1019
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1020
1021
1022
1023
1024
1025
1026
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1027
1028
1029
1030
1031
1032
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1033
1034
        :param chat_template: Callable
            Chat template to be applied to the fewshot context.
lintangsutawika's avatar
lintangsutawika committed
1035
1036
1037
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1038
1039
1040
1041
1042
1043
1044

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1045
1046
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1047

KonradSzafer's avatar
KonradSzafer committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1057
        else:
KonradSzafer's avatar
KonradSzafer committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1077
1078

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1079
1080
        if apply_chat_template:
            if self.multiple_input:
1081
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1093
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1107
            return chat_template(labeled_examples)
1108
        else:
KonradSzafer's avatar
KonradSzafer committed
1109
1110
            if self.multiple_input:
                return labeled_examples
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1121

1122
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1123
        """Iterates over FilterEnsembles and applies them to instances"""
1124
1125
        if hasattr(self, "_filters"):
            for f in self._filters:
1126
                f.apply(self._instances)
1127
1128
1129
1130
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1131
    def should_decontaminate(self):
1132
        return self.config.should_decontaminate
1133
1134

    def doc_to_decontamination_query(self, doc):
1135
        if self.config.should_decontaminate:
1136
1137
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1138
            else:
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1150

1151
    def _process_doc(self, doc: dict) -> dict:
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1163
1164
        if self.prompt is not None:
            doc_to_text = self.prompt
1165
        else:
1166
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1167

1168
        if isinstance(doc_to_text, int):
1169
            return doc_to_text
1170
        elif isinstance(doc_to_text, str):
1171
            if doc_to_text in self.features:
1172
                # if self.config.doc_to_choice is not None:
1173
1174
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1175
1176
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1177
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1178
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1179
1180
1181
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1182
        elif callable(doc_to_text):
1183
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1184
        # Used when applying a Promptsource template
1185
        elif hasattr(doc_to_text, "apply"):
1186
1187
1188
1189
1190
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1191
                return self.config.fewshot_delimiter
1192
        else:
1193
            print(type(doc_to_text))
1194
            raise TypeError
1195

1196
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1197
1198
        if self.prompt is not None:
            doc_to_target = self.prompt
1199
        else:
1200
            doc_to_target = self.config.doc_to_target
1201

1202
        if isinstance(doc_to_target, int):
1203
            return doc_to_target
1204
        elif isinstance(doc_to_target, str):
1205
            if doc_to_target in self.features:
1206
                # if self.config.doc_to_choice is not None:
1207
1208
1209
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1210
            else:
lintangsutawika's avatar
lintangsutawika committed
1211
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1212
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1213
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1214
1215
1216
1217
1218
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1219
1220
1221
1222
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1223
1224
                else:
                    return target_string
1225
        elif isinstance(doc_to_target, list):
1226
            return doc_to_target
1227
        elif callable(doc_to_target):
1228
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1229
        # Used when applying a Promptsource template
1230
        elif hasattr(doc_to_target, "apply"):
1231
            applied_prompt = doc_to_target.apply(doc)
1232
1233
1234
1235
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1236
                return self.config.fewshot_delimiter
1237
1238
        else:
            raise TypeError
1239

baberabb's avatar
baberabb committed
1240
    def doc_to_choice(self, doc: Any) -> List[str]:
1241
1242
        if self.prompt is not None:
            doc_to_choice = self.prompt
1243
        elif self.config.doc_to_choice is None:
1244
1245
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1246
            doc_to_choice = self.config.doc_to_choice
1247

1248
        if isinstance(doc_to_choice, str):
1249
1250
1251
1252
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1253
        elif isinstance(doc_to_choice, list):
1254
            return doc_to_choice
1255
        elif isinstance(doc_to_choice, dict):
1256
1257
1258
1259
1260
1261
1262
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1263

baberabb's avatar
baberabb committed
1264
1265
1266
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1267
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1268
            arguments = (ctx, self.doc_to_target(doc))
1269
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1270
            arguments = (self.doc_to_target(doc),)
1271
        elif self.OUTPUT_TYPE == "multiple_choice":
1272
            choices = self.doc_to_choice(doc)
1273
            target_delimiter = self.config.target_delimiter
1274
1275
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1276
                cont = self.doc_to_target(doc)
1277
1278
1279
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1280
            else:
1281
                # Otherwise they are placed in the continuation
1282
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1283

1284
            request_list = [
1285
1286
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1287
                    doc=doc,
1288
                    arguments=arg,
1289
                    idx=i,
1290
1291
                    **kwargs,
                )
1292
                for i, arg in enumerate(arguments)
1293
            ]
1294
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1295
            if "acc_mutual_info" in self._metric_fn_list.keys():
1296
1297
1298
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1299
                # here mutual info refers to calculating
1300
1301
1302
1303
1304
1305
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1306
                            doc=doc,
1307
                            arguments=("", "{}".format(choice)),
1308
1309
1310
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1311
                        for i, choice in enumerate(choices)
1312
1313
1314
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1315

1316
        elif self.OUTPUT_TYPE == "generate_until":
1317
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1318
1319

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1320
1321
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1322
1323

    def process_results(self, doc, results):
1324
1325
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1326

1327
        result_dict = {}
1328
        use_metric = list(self._metric_fn_list.keys())
1329
1330
1331
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1332
1333
1334
1335
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1336
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1337
            (loglikelihood,) = results
1338
1339
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1340
            return {
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1356
            }
1357
        elif self.OUTPUT_TYPE == "multiple_choice":
1358
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1359

1360
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1361
            choices = self.doc_to_choice(doc)
1362
1363
            completion_len = np.array([float(len(i)) for i in choices])

1364
1365
            if (
                2 * len(choices) == len(lls)
1366
                and "acc_mutual_info" in self._metric_fn_list.keys()
1367
1368
1369
1370
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1371
1372
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1373
1374
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1375

1376
1377
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1378

1379
1380
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1381
            else:
1382
                gold = self.doc_to_target(doc)
1383
1384

            gold_index_error = False
1385
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1386
1387
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1388
1389
                    gold_index_error = True
            else:
1390
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1391
                    gold = gold if gold < len(choices) else -100
1392
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1393
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1394

Lintang Sutawika's avatar
Lintang Sutawika committed
1395
                if gold == -100:
1396
1397
1398
1399
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1400
                    f"Label index was not in within range of available choices,"
1401
1402
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1403

1404
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1405
1406
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1407
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1408
1409
1410
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1411
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1412
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1413

Lintang Sutawika's avatar
Lintang Sutawika committed
1414
1415
1416
1417
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1418
            result_dict = {
1419
                **({"acc": acc} if "acc" in use_metric else {}),
1420
1421
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1422
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1423
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1424
1425
1426
1427
1428
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1429
1430
            }

1431
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1432
1433
1434
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1435
1436
1437
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1438
        elif self.OUTPUT_TYPE == "generate_until":
1439
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1440
            result = results[0]
1441
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1442
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1443
                # it assumes that doc_to_target returns a number.
1444
1445
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1446
1447
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1448
                gold = list(gold)
Chris's avatar
Chris committed
1449
1450
1451
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1452

lintangsutawika's avatar
lintangsutawika committed
1453
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1454
1455
1456
1457
1458
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1459
1460
1461
1462
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1463
1464
1465
1466
1467
1468
1469
1470
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1471
                    else:
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1493
                else:
1494
                    try:
1495
                        result_score = self._metric_fn_list[metric](
1496
1497
                            references=[gold],
                            predictions=[result],
1498
                            **self._metric_fn_kwargs[metric],
1499
                        )
1500
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1501
                        result_score = self._metric_fn_list[metric]([gold, result])
1502
1503
1504
1505
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1506
        else:
lintangsutawika's avatar
lintangsutawika committed
1507
1508
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1509
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1510
            )
1511
1512
1513

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1514
    def aggregation(self) -> dict:
1515
1516
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1517
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1518
        return self._higher_is_better
1519

Baber Abbasi's avatar
Baber Abbasi committed
1520
1521
1522
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1523
1524
1525
1526
1527
1528
1529
1530
1531
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1532
1533

class MultipleChoiceTask(Task):
1534
    OUTPUT_TYPE = "loglikelihood"
1535

baberabb's avatar
baberabb committed
1536
    def doc_to_target(self, doc: dict) -> str:
1537
1538
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1539
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1540
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1541
1542
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1543
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1544
                doc=doc,
1545
                arguments=(ctx, " {}".format(choice)),
1546
                idx=i,
1547
1548
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1549
1550
            for i, choice in enumerate(doc["choices"])
        ]
1551

1552
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1553
1554
1555
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1567
    def higher_is_better(self) -> dict:
1568
1569
1570
1571
1572
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1573
    def aggregation(self) -> dict:
1574
1575
1576
1577
1578
1579
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1580
class PerplexityTask(Task):
1581
1582
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1583
    def has_training_docs(self) -> bool:
1584
1585
        return False

baberabb's avatar
baberabb committed
1586
    def fewshot_examples(self, k: int, rnd) -> List:
1587
1588
1589
1590
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1591
1592
        return []

baberabb's avatar
baberabb committed
1593
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1594
1595
1596
1597
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1598
1599
1600

        return ""

baberabb's avatar
baberabb committed
1601
    def higher_is_better(self) -> dict:
1602
1603
1604
1605
1606
1607
1608
1609
1610
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1611
    def doc_to_text(self, doc) -> str:
1612
1613
1614
1615
1616
        return ""

    def doc_to_target(self, doc):
        return doc

1617
1618
1619
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1620

lintangsutawika's avatar
lintangsutawika committed
1621
1622
1623
1624
1625
1626
1627
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1628

1629
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1630
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1631
1632
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1633
1634
1635
1636
1637
1638
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1639
    def aggregation(self) -> dict:
1640
1641
1642
1643
1644
1645
1646
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1647
    def count_bytes(cls, doc) -> int:
1648
1649
1650
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1651
    def count_words(cls, doc) -> int:
1652
1653
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))