task.py 55.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
from typing import Any, Iterator, List, Literal, Tuple, Union
11
12
13

import datasets
import numpy as np
14
from tqdm import tqdm
15
16

from lm_eval import utils
17
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
18
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
19
from lm_eval.api.metrics import (
20
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
21
22
23
24
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
25
26
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
27
    get_aggregation,
28
    get_metric,
29
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
30
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
31
)
32
from lm_eval.caching.cache import load_from_cache, save_to_cache
33
34
35
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

36

37
38
39
40
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
41
    "generate_until",
42
43
]

44
eval_logger = logging.getLogger("lm-eval")
45

lintangsutawika's avatar
lintangsutawika committed
46

47
48
@dataclass
class TaskConfig(dict):
49
    # task naming/registry
50
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
51
    task_alias: str = None
52
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
53
    group_alias: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    process_docs: Callable = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
69
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
70
    process_results: Union[Callable, str] = None
71
    use_prompt: str = None
72
    description: str = ""
73
74
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
75
    fewshot_config: dict = None
76
    # runtime configuration options
77
    num_fewshot: int = None
78
    # scoring options
79
    metric_list: list = None
80
81
82
83
84
85
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
86
    generation_kwargs: dict = None
87
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
88
    filter_list: Union[str, list] = None
89
90
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
lintangsutawika's avatar
lintangsutawika committed
91
    weight_by_size: bool = False
92
    metadata: dict = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
93

Ethan Smith's avatar
Ethan Smith committed
94
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
95
        if self.generation_kwargs is not None:
96
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
97
                eval_logger.warning(
98
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
99
                )
100
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
101
102
103
104
105
106
107

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
108
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
109
        else:
110
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
111
112
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
113
114
115
116
117
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
118
119
                    "do_sample": False,
                }
120

121
122
123
    def __getitem__(self, item):
        return getattr(self, item)

124
125
126
    def __setitem__(self, item, value):
        return setattr(self, item, value)

127
    def to_dict(self, keep_callable: bool = False) -> dict:
128
129
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
130
        Used for dumping results alongside full task configuration
131

haileyschoelkopf's avatar
haileyschoelkopf committed
132
133
134
135
136
137
138
139
140
141
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
142
143
144
145
146
147
148
149
150
151
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
152
        return cfg_dict
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

170
171
172
173
174
175
176
177
178
179
180
181

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
182

183
184
185
186
187
188
189
190
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
191

192
193
194
195
196
197
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
198
    ) -> None:
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
225
        self._config = TaskConfig({**config}) if config else TaskConfig()
226

lintangsutawika's avatar
lintangsutawika committed
227
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
228

Ethan Smith's avatar
Ethan Smith committed
229
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
254
255
256
257
258
259
260
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
261

262
263
264
265
266
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

303
304
305
306
307
308
309
310
311
312
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
313
            eval_logger.warning(
314
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
315
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
316
            )
317
318
            return self.test_docs()

319
320
321
322
323
324
325
326
327
328
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
329

330
    @property
331
    def instances(self) -> List[Instance]:
332
333
334
335
336
337
338
339
340
341
342
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
343
    def doc_to_decontamination_query(self, doc) -> None:
344
345
346
347
348
349
350
351
352
353
354
355
356
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

357
358
    def build_all_requests(
        self,
359
        *,
360
361
362
363
364
365
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
366
367
        """Build a set of Instances for a task, and store them in task.instances"""

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        # used with caching
        og_limit = limit

        cache_key = f"requests-{self._config.task}"

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
387
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
388

389
        instances = []
390
391
392
393
394
395
396
397
398
399

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
400
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
401
402
403
404
405
406
407
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
408
        ):
409
            # sample fewshot context #TODO: need to offset doc_id by rank now!
410
            fewshot_ctx = self.fewshot_context(
411
                doc,
412
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
413
            )
414

415
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
416
417
418
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
419
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
420
            )
421
422
423
424

            if not isinstance(inst, list):
                inst = [inst]

425
426
427
428
429
430
431
432
433
434
435
436
437
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
438
439
440

        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

441
442
443
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
460
            The number of times each instance in a dataset is inferred on. Defaults to 1,
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

496
497
498
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
499
500
501
502
503
504
505
506
507
508
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

509
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
510
    def fewshot_context(
511
512
513
514
515
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
516
    ):
517
518
519
520
521
522
523
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
524
525
526
527
528
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
529
530
531
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
532
533
534
535
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

536
        description = description if description else ""
537
538

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
539
            labeled_examples = ""
540
        else:
lintangsutawika's avatar
lintangsutawika committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
565
            )
566
567

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
568
        return description + labeled_examples + example
569
570

    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
571
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
572
573
        if hasattr(self, "_filters"):
            for f in self._filters:
574
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
575
576
577
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
578

baberabb's avatar
baberabb committed
579
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
580
        """Returns the config as a dictionary."""
581
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
582
        # (num_fewshot)
583
        return self.config.to_dict()
584

Baber Abbasi's avatar
Baber Abbasi committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

646
647

class ConfigurableTask(Task):
648
    VERSION = "Yaml"
649
    OUTPUT_TYPE = None
650
    CONFIG = None
651
652
653

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
654
    ) -> None:  # TODO no super() call here
655
        # Get pre-configured attributes
656
        self._config = self.CONFIG
657

658
        # Use new configurations if there was no preconfiguration
659
        if self.config is None:
660
            self._config = TaskConfig(**config)
661
662
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
663
            if config is not None:
664
                self._config.__dict__.update(config)
665

666
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
667
668
669
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
670

671
672
673
674
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

675
676
677
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
678

679
680
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
681

682
683
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
684

685
686
687
688
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
689

690
        if self.config.metric_list is None:
691
            # TODO: handle this in TaskConfig.__post_init__ ?
692
693
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

694
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
695
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
696
                self._metric_fn_kwargs[metric_name] = {}
697
698
699
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
700
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
701
        else:
702
            for metric_config in self.config.metric_list:
703
704
705
706
707
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
708
709
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
710
                }
Chris's avatar
Chris committed
711
712
713
714
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
715

716
                if self.config.process_results is not None:
717
718
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
719
720
721
722
723
724
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
725
726
727
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
728
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
729

730
                if "aggregation" in metric_config:
731
                    agg_name = metric_config["aggregation"]
732
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
733
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
734
                    elif callable(agg_name):  # noqa: E721
735
736
737
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
738
                else:
739
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
740
                    metric_agg = get_metric_aggregation(metric_name)
741
                    eval_logger.warning(
742
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
743
744
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
745
                    )
746
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
747

748
749
750
751
752
753
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
754
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
755
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
756
                        f"higher_is_better={is_higher_better(metric_name)}"
757
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
758
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
759

760
        self.download(self.config.dataset_kwargs)
761
762
763
        self._training_docs = None
        self._fewshot_docs = None

764
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
765
            self._filters = []
766
            for filter_config in self.config.filter_list:
767
768
769
770
771
772
773
774
775
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
776
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
777
        else:
778
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
779

780
781
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
782
            self.prompt = get_prompt(
783
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
784
            )
785
786
787
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
788
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
789
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
790
791
792
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
793
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
794

795
        self.task_docs = self.eval_docs
796

797
        # Test One Doc
798
        self.features = list(self.task_docs.features.keys())
799
800
        self.multiple_input = 0
        self.multiple_target = 0
801
        test_doc = self.task_docs[0]
802
        test_text = self.doc_to_text(test_doc)
803
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
804

805
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
806
            test_choice = self.doc_to_choice(test_doc)
807
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
808
                eval_logger.error("doc_to_choice must return list")
809
810
            else:
                num_choice = len(test_choice)
811

812
            if isinstance(test_text, int):
813
                self.multiple_input = num_choice
814
815
        else:
            test_choice = None
816

817
        if isinstance(test_target, list):
818
            self.multiple_target = len(test_target)
819
        else:
820
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
821
                test_target = test_choice[test_target]
822
            else:
lintangsutawika's avatar
lintangsutawika committed
823
                test_target = str(test_target)
824

825
826
827
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
828
            check_choices = [test_target]
829
830
831
832
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
833
834
                    True
                    if self.config.target_delimiter.rstrip()
835
                    != self.config.target_delimiter
836
                    else False
837
                )
838

839
                if delimiter_has_whitespace and choice_has_whitespace:
840
841
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
842
843
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
844
                    eval_logger.debug(
845
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
846
847
                    )

Ethan Smith's avatar
Ethan Smith committed
848
    def download(self, dataset_kwargs=None) -> None:
849
850
851
852
853
854
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
855
    def has_training_docs(self) -> bool:
856
        if self.config.training_split is not None:
857
858
859
860
            return True
        else:
            return False

baberabb's avatar
baberabb committed
861
    def has_validation_docs(self) -> bool:
862
        if self.config.validation_split is not None:
863
864
865
866
            return True
        else:
            return False

baberabb's avatar
baberabb committed
867
    def has_test_docs(self) -> bool:
868
        if self.config.test_split is not None:
869
870
871
872
            return True
        else:
            return False

baberabb's avatar
baberabb committed
873
    def training_docs(self) -> datasets.Dataset:
874
        if self.has_training_docs():
875
876
877
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
878
                )
879
            return self.dataset[self.config.training_split]
880

baberabb's avatar
baberabb committed
881
    def validation_docs(self) -> datasets.Dataset:
882
        if self.has_validation_docs():
883
884
885
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
886
                )
887
            return self.dataset[self.config.validation_split]
888

baberabb's avatar
baberabb committed
889
    def test_docs(self) -> datasets.Dataset:
890
        if self.has_test_docs():
891
892
893
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
894

895
    def fewshot_docs(self):
896
        if self.config.fewshot_split is not None:
897
898
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
899
            return self.dataset[self.config.fewshot_split]
900
        else:
901
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
902
                eval_logger.warning(
903
                    f"Task '{self.config.task}': "
904
905
906
907
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
908

lintangsutawika's avatar
lintangsutawika committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
931
932
933
934
935
936
937
938
939
940
941
942
943
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
944

945
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
946
        """Iterates over FilterEnsembles and applies them to instances"""
947
948
        if hasattr(self, "_filters"):
            for f in self._filters:
949
                f.apply(self._instances)
950
951
952
953
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

954
    def should_decontaminate(self):
955
        return self.config.should_decontaminate
956
957

    def doc_to_decontamination_query(self, doc):
958
        if self.config.should_decontaminate:
959
960
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
961
            else:
962
963
964
965
966
967
968
969
970
971
972
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
973

974
975
976
977
978
979
980
981
982
983
984
985
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
986
987
        if self.prompt is not None:
            doc_to_text = self.prompt
988
        else:
989
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
990

991
        if isinstance(doc_to_text, int):
992
            return doc_to_text
993
        elif isinstance(doc_to_text, str):
994
            if doc_to_text in self.features:
995
                # if self.config.doc_to_choice is not None:
996
997
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
998
999
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1000
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1001
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1002
1003
1004
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1005
        elif callable(doc_to_text):
1006
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1007
        # Used when applying a Promptsource template
1008
        elif hasattr(doc_to_text, "apply"):
1009
1010
1011
1012
1013
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1014
                return self.config.fewshot_delimiter
1015
        else:
1016
            print(type(doc_to_text))
1017
            raise TypeError
1018

1019
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
1020
1021
        if self.prompt is not None:
            doc_to_target = self.prompt
1022
        else:
1023
            doc_to_target = self.config.doc_to_target
1024

1025
        if isinstance(doc_to_target, int):
1026
            return doc_to_target
1027
        elif isinstance(doc_to_target, str):
1028
            if doc_to_target in self.features:
1029
                # if self.config.doc_to_choice is not None:
1030
1031
1032
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1033
            else:
lintangsutawika's avatar
lintangsutawika committed
1034
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1035
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1036
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1037
1038
1039
1040
1041
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1042
1043
1044
1045
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1046
1047
                else:
                    return target_string
1048
        elif isinstance(doc_to_target, list):
1049
            return doc_to_target
1050
        elif callable(doc_to_target):
1051
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1052
        # Used when applying a Promptsource template
1053
        elif hasattr(doc_to_target, "apply"):
1054
            applied_prompt = doc_to_target.apply(doc)
1055
1056
1057
1058
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1059
                return self.config.fewshot_delimiter
1060
1061
        else:
            raise TypeError
1062

baberabb's avatar
baberabb committed
1063
    def doc_to_choice(self, doc: Any) -> List[str]:
1064
1065
        if self.prompt is not None:
            doc_to_choice = self.prompt
1066
        elif self.config.doc_to_choice is None:
1067
1068
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1069
            doc_to_choice = self.config.doc_to_choice
1070

1071
        if isinstance(doc_to_choice, str):
1072
1073
1074
1075
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1076
        elif isinstance(doc_to_choice, list):
1077
            return doc_to_choice
1078
        elif isinstance(doc_to_choice, dict):
1079
1080
1081
1082
1083
1084
1085
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1086

baberabb's avatar
baberabb committed
1087
1088
1089
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1090
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1091
            arguments = (ctx, self.doc_to_target(doc))
1092
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1093
            arguments = (self.doc_to_target(doc),)
1094
        elif self.OUTPUT_TYPE == "multiple_choice":
1095
            choices = self.doc_to_choice(doc)
1096
            target_delimiter = self.config.target_delimiter
1097
1098
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1099
                cont = self.doc_to_target(doc)
1100
1101
1102
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1103
            else:
1104
                # Otherwise they are placed in the continuation
1105
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1106

1107
            request_list = [
1108
1109
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1110
                    doc=doc,
1111
                    arguments=arg,
1112
                    idx=i,
1113
1114
                    **kwargs,
                )
1115
                for i, arg in enumerate(arguments)
1116
            ]
1117
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1118
            if "acc_mutual_info" in self._metric_fn_list.keys():
1119
1120
1121
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1122
                # here mutual info refers to calculating
1123
1124
1125
1126
1127
1128
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1129
                            doc=doc,
1130
                            arguments=("", "{}".format(choice)),
1131
1132
1133
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1134
                        for i, choice in enumerate(choices)
1135
1136
1137
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1138

1139
        elif self.OUTPUT_TYPE == "generate_until":
1140
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1141
1142

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1143
1144
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1145
1146

    def process_results(self, doc, results):
1147
1148
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1149

1150
        result_dict = {}
1151
        use_metric = list(self._metric_fn_list.keys())
1152
1153
1154
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1155
1156
1157
1158
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1159
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1160
            (loglikelihood,) = results
1161
1162
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1163
            return {
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1179
            }
1180
        elif self.OUTPUT_TYPE == "multiple_choice":
1181
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1182

1183
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1184
            choices = self.doc_to_choice(doc)
1185
1186
            completion_len = np.array([float(len(i)) for i in choices])

1187
1188
            if (
                2 * len(choices) == len(lls)
1189
                and "acc_mutual_info" in self._metric_fn_list.keys()
1190
1191
1192
1193
1194
1195
1196
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1197

1198
1199
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1200

1201
1202
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1203
            else:
1204
                gold = self.doc_to_target(doc)
1205
1206

            gold_index_error = False
1207
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1208
1209
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1210
1211
                    gold_index_error = True
            else:
1212
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1213
                    gold = gold if gold < len(choices) else -100
1214
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1215
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1216

Lintang Sutawika's avatar
Lintang Sutawika committed
1217
                if gold == -100:
1218
1219
1220
1221
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1222
                    f"Label index was not in within range of available choices,"
1223
1224
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1225

1226
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1227
1228
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1229
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1230
1231
1232
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1233
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1234
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1235

Lintang Sutawika's avatar
Lintang Sutawika committed
1236
1237
1238
1239
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1240
            result_dict = {
1241
                **({"acc": acc} if "acc" in use_metric else {}),
1242
1243
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1244
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1245
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1246
1247
1248
1249
1250
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1251
1252
            }

1253
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1254
1255
1256
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1257
1258
1259
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1260
        elif self.OUTPUT_TYPE == "generate_until":
1261
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1262
            result = results[0]
1263
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1264
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1265
                # it assumes that doc_to_target returns a number.
1266
1267
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1268
1269
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1270
                gold = list(gold)
Chris's avatar
Chris committed
1271
1272
1273
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1274

lintangsutawika's avatar
lintangsutawika committed
1275
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1276
1277
1278
1279
1280
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1281
1282
1283
1284
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1285
1286
1287
1288
1289
1290
1291
1292
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1293
                    else:
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1315
                else:
1316
                    try:
1317
                        result_score = self._metric_fn_list[metric](
1318
1319
                            references=[gold],
                            predictions=[result],
1320
                            **self._metric_fn_kwargs[metric],
1321
                        )
1322
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1323
                        result_score = self._metric_fn_list[metric]([gold, result])
1324
1325
1326
1327
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1328
        else:
lintangsutawika's avatar
lintangsutawika committed
1329
1330
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1331
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1332
            )
1333
1334
1335

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1336
    def aggregation(self) -> dict:
1337
1338
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1339
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1340
        return self._higher_is_better
1341

Baber Abbasi's avatar
Baber Abbasi committed
1342
1343
1344
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1345
1346
1347
1348
1349
1350
1351
1352
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )
Baber Abbasi's avatar
Baber Abbasi committed
1353

1354
1355
1356
1357

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1358
    def doc_to_target(self, doc: dict) -> str:
1359
1360
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1361
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1362
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1363
1364
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1365
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1366
                doc=doc,
1367
                arguments=(ctx, " {}".format(choice)),
1368
                idx=i,
1369
1370
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1371
1372
            for i, choice in enumerate(doc["choices"])
        ]
1373

baberabb's avatar
baberabb committed
1374
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1375
1376
1377
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1389
    def higher_is_better(self) -> dict:
1390
1391
1392
1393
1394
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1395
    def aggregation(self) -> dict:
1396
1397
1398
1399
1400
1401
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1402
class PerplexityTask(Task):
1403
1404
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1405
    def has_training_docs(self) -> bool:
1406
1407
        return False

baberabb's avatar
baberabb committed
1408
    def fewshot_examples(self, k: int, rnd) -> List:
1409
1410
1411
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1412
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1413
1414
1415
1416
1417
1418
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1419
    def higher_is_better(self) -> dict:
1420
1421
1422
1423
1424
1425
1426
1427
1428
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1429
    def doc_to_text(self, doc) -> str:
1430
1431
1432
1433
1434
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1435
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1436
1437
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1438
1439
1440
1441
1442
1443
1444
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1445

baberabb's avatar
baberabb committed
1446
    def process_results(self, doc: dict, results: float) -> dict:
1447
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1448
1449
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1450
1451
1452
1453
1454
1455
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1456
    def aggregation(self) -> dict:
1457
1458
1459
1460
1461
1462
1463
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1464
    def count_bytes(cls, doc) -> int:
1465
1466
1467
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1468
    def count_words(cls, doc) -> int:
1469
1470
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))