task.py 51.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
8
from inspect import getsource
9
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
23
24
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
25
    get_aggregation,
26
    get_metric,
27
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
28
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
29
)
30
31
32
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

33

34
35
36
37
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
38
    "generate_until",
39
40
]

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
78
79
80
81
82
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
90
91
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
92

Ethan Smith's avatar
Ethan Smith committed
93
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
94
        if self.generation_kwargs is not None:
95
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
96
                eval_logger.warning(
97
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
98
                )
99
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
100
101
102
103
104
105
106

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
107
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
108
        else:
109
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
110
111
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
112
                    "until": None
113
114
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                    "do_sample": False,
                }
117

118
119
120
    def __getitem__(self, item):
        return getattr(self, item)

121
122
123
    def __setitem__(self, item, value):
        return setattr(self, item, value)

124
    def to_dict(self, keep_callable: bool = False) -> dict:
125
126
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
127
        Used for dumping results alongside full task configuration
128

haileyschoelkopf's avatar
haileyschoelkopf committed
129
130
131
132
133
134
135
136
137
138
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
139
140
141
142
143
144
145
146
147
148
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
        return cfg_dict
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

167
168
169
170
171
172
173
174
175
176
177
178

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
179

180
181
182
183
184
185
186
187
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
188

189
190
191
192
193
194
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
195
    ) -> None:
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
222
        self._config = TaskConfig({**config}) if config else TaskConfig()
223

lintangsutawika's avatar
lintangsutawika committed
224
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
225

Ethan Smith's avatar
Ethan Smith committed
226
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
251
252
253
254
255
256
257
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
258

259
260
261
262
263
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

300
301
302
303
304
305
306
307
308
309
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
310
            eval_logger.warning(
311
                "has_training_docs and has_validation_docs are False"
312
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
313
            )
314
315
            return self.test_docs()

316
317
318
319
320
321
322
323
324
325
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
326

327
328
329
330
331
332
333
334
335
336
337
338
339
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
340
    def doc_to_decontamination_query(self, doc) -> None:
341
342
343
344
345
346
347
348
349
350
351
352
353
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
354
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
355
356
357
358
359
360
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
361
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
362

363
        eval_logger.info(f"Building contexts for task on rank {rank}...")
364

365
        instances = []
366
367
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
368
        ):
369
            # sample fewshot context #TODO: need to offset doc_id by rank now!
370
            fewshot_ctx = self.fewshot_context(
371
                doc,
372
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
373
            )
374

375
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
376
377
378
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
379
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
380
            )
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
406
            The number of times each instance in a dataset is inferred on. Defaults to 1,
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
442
443
444
445
446
447
448
449
450
451
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

452
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
453
    def fewshot_context(
454
455
456
457
458
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
459
    ):
460
461
462
463
464
465
466
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
467
468
469
470
471
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
472
473
474
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
475
476
477
478
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

479
        description = description if description else ""
480
481

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
482
            labeled_examples = ""
483
        else:
lintangsutawika's avatar
lintangsutawika committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
508
            )
509
510

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
511
        return description + labeled_examples + example
512
513

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
514
515
        if hasattr(self, "_filters"):
            for f in self._filters:
516
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
517
518
519
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
520

baberabb's avatar
baberabb committed
521
    def dump_config(self) -> dict:
522
        """Returns a dictionary representing the task's config.
523
524
525
526
527

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
528
        # (num_fewshot)
529
        return self.config.to_dict()
530

531
532

class ConfigurableTask(Task):
533
    VERSION = "Yaml"
534
    OUTPUT_TYPE = None
535
    CONFIG = None
536
537
538

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
539
    ) -> None:  # TODO no super() call here
540
        # Get pre-configured attributes
541
        self._config = self.CONFIG
542

543
        # Use new configurations if there was no preconfiguration
544
        if self.config is None:
545
            self._config = TaskConfig(**config)
546
547
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
548
            if config is not None:
549
                self._config.__dict__.update(config)
550

551
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
552
553
554
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
555

556
557
558
559
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

560
561
562
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
563

564
565
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
566

567
568
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
569

570
571
572
573
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
574

575
        if self.config.metric_list is None:
576
            # TODO: handle this in TaskConfig.__post_init__ ?
577
578
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

579
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
580
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
581
                self._metric_fn_kwargs[metric_name] = {}
582
583
584
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
585
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
586
        else:
587
            for metric_config in self.config.metric_list:
588
589
590
591
592
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
593
594
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
595
                }
Chris's avatar
Chris committed
596
597
598
599
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
600

601
                if self.config.process_results is not None:
602
603
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
604
605
606
607
608
609
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
610
611
612
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
613
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
614

615
                if "aggregation" in metric_config:
616
                    agg_name = metric_config["aggregation"]
617
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
618
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
619
                    elif callable(agg_name):  # noqa: E721
620
621
622
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
623
                else:
624
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
625
                    metric_agg = get_metric_aggregation(metric_name)
626
                    eval_logger.warning(
baberabb's avatar
baberabb committed
627
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
628
629
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
630
                    )
631
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
632

633
634
635
636
637
638
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
639
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
640
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
641
                        f"higher_is_better={is_higher_better(metric_name)}"
642
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
643
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
644

645
        self.download(self.config.dataset_kwargs)
646
647
648
        self._training_docs = None
        self._fewshot_docs = None

649
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
650
            self._filters = []
651
            for filter_config in self.config.filter_list:
652
653
654
655
656
657
658
659
660
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
661
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
662
        else:
663
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
664

665
666
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
667
            self.prompt = get_prompt(
668
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
669
            )
670
671
672
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
673
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
674
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
675
676
677
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
678
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
679

680
        if self.has_test_docs():
681
            self.task_docs = self.test_docs()
682
        elif self.has_validation_docs():
683
            self.task_docs = self.validation_docs()
684
        else:
685
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
686

687
        # Test One Doc
688
        self.features = list(self.task_docs.features.keys())
689
690
        self.multiple_input = 0
        self.multiple_target = 0
691
        test_doc = self.task_docs[0]
692
        test_text = self.doc_to_text(test_doc)
693
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
694

695
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
696
            test_choice = self.doc_to_choice(test_doc)
697
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
698
                eval_logger.error("doc_to_choice must return list")
699
700
            else:
                num_choice = len(test_choice)
701

702
            if isinstance(test_text, int):
703
                self.multiple_input = num_choice
704
705
        else:
            test_choice = None
706

707
        if isinstance(test_target, list):
708
            self.multiple_target = len(test_target)
709
        else:
710
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
711
                test_target = test_choice[test_target]
712
            else:
lintangsutawika's avatar
lintangsutawika committed
713
                test_target = str(test_target)
714

715
716
717
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
718
            check_choices = [test_target]
719
720
721
722
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
723
724
                    True
                    if self.config.target_delimiter.rstrip()
725
                    != self.config.target_delimiter
726
                    else False
727
                )
728

729
                if delimiter_has_whitespace and choice_has_whitespace:
730
731
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
732
733
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
734
                    eval_logger.debug(
735
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
736
737
                    )

Ethan Smith's avatar
Ethan Smith committed
738
    def download(self, dataset_kwargs=None) -> None:
739
740
741
742
743
744
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
745
    def has_training_docs(self) -> bool:
746
        if self.config.training_split is not None:
747
748
749
750
            return True
        else:
            return False

baberabb's avatar
baberabb committed
751
    def has_validation_docs(self) -> bool:
752
        if self.config.validation_split is not None:
753
754
755
756
            return True
        else:
            return False

baberabb's avatar
baberabb committed
757
    def has_test_docs(self) -> bool:
758
        if self.config.test_split is not None:
759
760
761
762
            return True
        else:
            return False

baberabb's avatar
baberabb committed
763
    def training_docs(self) -> datasets.Dataset:
764
        if self.has_training_docs():
765
766
767
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
768
                )
769
            return self.dataset[self.config.training_split]
770

baberabb's avatar
baberabb committed
771
    def validation_docs(self) -> datasets.Dataset:
772
        if self.has_validation_docs():
773
774
775
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
776
                )
777
            return self.dataset[self.config.validation_split]
778

baberabb's avatar
baberabb committed
779
    def test_docs(self) -> datasets.Dataset:
780
        if self.has_test_docs():
781
782
783
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
784

785
    def fewshot_docs(self):
786
        if self.config.fewshot_split is not None:
787
788
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
789
            return self.dataset[self.config.fewshot_split]
790
        else:
791
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
792
                eval_logger.warning(
793
                    f"Task '{self.config.task}': "
794
795
796
797
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
798

lintangsutawika's avatar
lintangsutawika committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
821
822
823
824
825
826
827
828
829
830
831
832
833
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
834

835
836
837
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
838
                f.apply(self._instances)
839
840
841
842
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

843
    def should_decontaminate(self):
844
        return self.config.should_decontaminate
845
846

    def doc_to_decontamination_query(self, doc):
847
        if self.config.should_decontaminate:
848
849
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
850
            else:
851
852
853
854
855
856
857
858
859
860
861
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
862

863
864
865
866
867
868
869
870
871
872
873
874
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
875
876
        if self.prompt is not None:
            doc_to_text = self.prompt
877
        else:
878
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
879

880
        if isinstance(doc_to_text, int):
881
            return doc_to_text
882
        elif isinstance(doc_to_text, str):
883
            if doc_to_text in self.features:
884
                # if self.config.doc_to_choice is not None:
885
886
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
887
888
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
889
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
890
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
891
892
893
                    return ast.literal_eval(text_string)
                else:
                    return text_string
894
        elif callable(doc_to_text):
895
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
896
        # Used when applying a Promptsource template
897
        elif hasattr(doc_to_text, "apply"):
898
899
900
901
902
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
903
                return self.config.fewshot_delimiter
904
        else:
905
            print(type(doc_to_text))
906
            raise TypeError
907

908
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
909
910
        if self.prompt is not None:
            doc_to_target = self.prompt
911
        else:
912
            doc_to_target = self.config.doc_to_target
913

914
        if isinstance(doc_to_target, int):
915
            return doc_to_target
916
        elif isinstance(doc_to_target, str):
917
            if doc_to_target in self.features:
918
                # if self.config.doc_to_choice is not None:
919
920
921
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
922
            else:
lintangsutawika's avatar
lintangsutawika committed
923
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
924
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
925
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
926
927
928
929
930
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
931
932
933
934
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
935
936
                else:
                    return target_string
937
        elif isinstance(doc_to_target, list):
938
            return doc_to_target
939
        elif callable(doc_to_target):
940
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
941
        # Used when applying a Promptsource template
942
        elif hasattr(doc_to_target, "apply"):
943
            applied_prompt = doc_to_target.apply(doc)
944
945
946
947
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
948
                return self.config.fewshot_delimiter
949
950
        else:
            raise TypeError
951

baberabb's avatar
baberabb committed
952
    def doc_to_choice(self, doc: Any) -> List[str]:
953
954
        if self.prompt is not None:
            doc_to_choice = self.prompt
955
        elif self.config.doc_to_choice is None:
956
957
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
958
            doc_to_choice = self.config.doc_to_choice
959

960
        if isinstance(doc_to_choice, str):
961
962
963
964
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
965
        elif isinstance(doc_to_choice, list):
966
            return doc_to_choice
967
        elif isinstance(doc_to_choice, dict):
968
969
970
971
972
973
974
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
975

baberabb's avatar
baberabb committed
976
977
978
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
979
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
980
            arguments = (ctx, self.doc_to_target(doc))
981
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
982
            arguments = (self.doc_to_target(doc),)
983
        elif self.OUTPUT_TYPE == "multiple_choice":
984
            choices = self.doc_to_choice(doc)
985
            target_delimiter = self.config.target_delimiter
986
987
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
988
                cont = self.doc_to_target(doc)
989
990
991
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
992
            else:
993
                # Otherwise they are placed in the continuation
994
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
995

996
            request_list = [
997
998
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
999
                    doc=doc,
1000
                    arguments=arg,
1001
                    idx=i,
1002
1003
                    **kwargs,
                )
1004
                for i, arg in enumerate(arguments)
1005
            ]
1006
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1007
            if "acc_mutual_info" in self._metric_fn_list.keys():
1008
1009
1010
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1011
                # here mutual info refers to calculating
1012
1013
1014
1015
1016
1017
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1018
                            doc=doc,
1019
                            arguments=("", "{}".format(choice)),
1020
1021
1022
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1023
                        for i, choice in enumerate(choices)
1024
1025
1026
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1027

1028
        elif self.OUTPUT_TYPE == "generate_until":
1029
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1030
1031

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1032
1033
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1034
1035

    def process_results(self, doc, results):
1036
1037
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1038

1039
        result_dict = {}
1040
        use_metric = list(self._metric_fn_list.keys())
1041
1042
1043
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1044
1045
1046
1047
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1048
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1049
            (loglikelihood,) = results
1050
1051
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1052
            return {
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1068
            }
1069
        elif self.OUTPUT_TYPE == "multiple_choice":
1070
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1071

1072
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1073
            choices = self.doc_to_choice(doc)
1074
1075
            completion_len = np.array([float(len(i)) for i in choices])

1076
1077
            if (
                2 * len(choices) == len(lls)
1078
                and "acc_mutual_info" in self._metric_fn_list.keys()
1079
1080
1081
1082
1083
1084
1085
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1086

1087
1088
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1089

1090
1091
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1092
            else:
1093
                gold = self.doc_to_target(doc)
1094
1095

            gold_index_error = False
1096
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1097
1098
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1099
1100
                    gold_index_error = True
            else:
1101
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1102
                    gold = gold if gold < len(choices) else -100
1103
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1104
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1105

Lintang Sutawika's avatar
Lintang Sutawika committed
1106
                if gold == -100:
1107
1108
1109
1110
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1111
                    f"Label index was not in within range of available choices,"
1112
1113
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1114

1115
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1116
1117
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1118
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1119
1120
1121
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1122
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1123
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1124
1125

            result_dict = {
1126
                **({"acc": acc} if "acc" in use_metric else {}),
1127
1128
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1129
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1130
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1131
1132
            }

1133
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1134
1135
1136
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1137
1138
1139
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1140
        elif self.OUTPUT_TYPE == "generate_until":
1141
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1142
            result = results[0]
1143
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1144
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1145
                # it assumes that doc_to_target returns a number.
1146
1147
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1148
1149
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1150
                gold = list(gold)
Chris's avatar
Chris committed
1151
1152
1153
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1154

lintangsutawika's avatar
lintangsutawika committed
1155
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1156
1157
1158
1159
1160
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
1162
1163
1164
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1165
1166
1167
1168
1169
1170
1171
1172
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1173
                    else:
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1195
                else:
1196
                    try:
1197
                        result_score = self._metric_fn_list[metric](
1198
1199
                            references=[gold],
                            predictions=[result],
1200
                            **self._metric_fn_kwargs[metric],
1201
                        )
1202
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1203
                        result_score = self._metric_fn_list[metric]([gold, result])
1204
1205
1206
1207
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1208
        else:
lintangsutawika's avatar
lintangsutawika committed
1209
1210
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1211
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1212
            )
1213
1214
1215

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1216
    def aggregation(self) -> dict:
1217
1218
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1219
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1220
        return self._higher_is_better
1221

Baber Abbasi's avatar
Baber Abbasi committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

    def override_config(
        self, key: str = None, value: Any = None, update: bool = False
    ) -> None:
        if update:
            current_value = getattr(self._config, key)
            assert isinstance(current_value, dict)
            current_value.update(value)
            setattr(self._config, key, current_value)
        else:
            setattr(self._config, key, value)

1256
1257
1258
1259

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1260
    def doc_to_target(self, doc: dict) -> str:
1261
1262
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1263
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1264
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1265
1266
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1267
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1268
                doc=doc,
1269
                arguments=(ctx, " {}".format(choice)),
1270
                idx=i,
1271
1272
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1273
1274
            for i, choice in enumerate(doc["choices"])
        ]
1275

baberabb's avatar
baberabb committed
1276
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1277
1278
1279
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1291
    def higher_is_better(self) -> dict:
1292
1293
1294
1295
1296
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1297
    def aggregation(self) -> dict:
1298
1299
1300
1301
1302
1303
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1304
class PerplexityTask(Task):
1305
1306
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1307
    def has_training_docs(self) -> bool:
1308
1309
        return False

baberabb's avatar
baberabb committed
1310
    def fewshot_examples(self, k: int, rnd) -> List:
1311
1312
1313
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1314
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1315
1316
1317
1318
1319
1320
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1321
    def higher_is_better(self) -> dict:
1322
1323
1324
1325
1326
1327
1328
1329
1330
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1331
    def doc_to_text(self, doc) -> str:
1332
1333
1334
1335
1336
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1337
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1338
1339
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1340
1341
1342
1343
1344
1345
1346
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1347

baberabb's avatar
baberabb committed
1348
    def process_results(self, doc: dict, results: float) -> dict:
1349
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1350
1351
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1352
1353
1354
1355
1356
1357
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1358
    def aggregation(self) -> dict:
1359
1360
1361
1362
1363
1364
1365
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1366
    def count_bytes(cls, doc) -> int:
1367
1368
1369
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1370
    def count_words(cls, doc) -> int:
1371
1372
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))