task.py 61.8 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
70
71
72
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
95
96
97
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
325
            eval_logger.warning(
326
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
327
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
328
            )
329
330
            return self.test_docs()

331
    def _process_doc(self, doc: dict) -> dict:
332
333
334
335
336
337
338
339
340
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
341

342
    @property
343
    def instances(self) -> List[Instance]:
344
345
346
347
348
349
350
351
352
353
354
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

355
356
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
357
358
359
360
361
362
363
364
365
366
367
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

368
369
    def build_all_requests(
        self,
370
        *,
371
372
373
374
375
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
Konrad's avatar
Konrad committed
376
        system_instruction=None,
Konrad's avatar
Konrad committed
377
        apply_chat_template=False,
Konrad's avatar
Konrad committed
378
        fewshot_as_multiturn=False,
Konrad's avatar
Konrad committed
379
        tokenizer=None,
380
    ) -> None:
381
        """Build a set of Instances for a task, and store them in task.instances"""
382
383
384
385

        # used with caching
        og_limit = limit

386
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
402
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
403

404
        instances = []
405
406
407
408
409
410
411
412
413
414

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
415
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
416
417
418
419
420
421
422
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
423
        ):
424
            # sample fewshot context #TODO: need to offset doc_id by rank now!
425
            fewshot_ctx = self.fewshot_context(
426
                doc,
427
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
Konrad's avatar
Konrad committed
428
                system_instruction,
Konrad's avatar
Konrad committed
429
                apply_chat_template,
Konrad's avatar
Konrad committed
430
                fewshot_as_multiturn,
Konrad's avatar
Konrad committed
431
                tokenizer,
432
            )
433

434
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
435
436
437
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
438
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
439
            )
440
441
442
443

            if not isinstance(inst, list):
                inst = [inst]

444
445
446
447
448
449
450
451
452
453
454
455
456
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
457

458
459
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
460

461
462
463
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
480
            The number of times each instance in a dataset is inferred on. Defaults to 1,
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

516
517
518
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
519
520
521
522
523
524
525
526
527
528
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

529
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
530
    def fewshot_context(
531
532
533
        self,
        doc,
        num_fewshot,
534
        rnd=None,
535
        description=None,
lintangsutawika's avatar
lintangsutawika committed
536
    ):
537
538
539
540
541
542
543
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
544
545
546
547
548
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
549
550
551
        :returns: str
            The fewshot context.
        """
552
        if rnd is None:
553
554
555
556
557
558
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
559

560
        description = description if description else ""
561
562

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
563
            labeled_examples = ""
564
        else:
lintangsutawika's avatar
lintangsutawika committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
589
            )
590
591

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
592
        return description + labeled_examples + example
593

594
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
595
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
596
597
        if hasattr(self, "_filters"):
            for f in self._filters:
598
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
599
600
601
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
602

baberabb's avatar
baberabb committed
603
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
604
        """Returns the config as a dictionary."""
605
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
606
        # (num_fewshot)
607
        return self.config.to_dict()
608

Baber Abbasi's avatar
Baber Abbasi committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

649
650
651
652
653
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

654
655
656
657
658
659
660
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
661
662
663
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
664
665
666
667
668
669
670
671
672
673
674
675
676

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

677
678

class ConfigurableTask(Task):
679
    VERSION = "Yaml"
680
    OUTPUT_TYPE = None
681
    CONFIG = None
682
683

    def __init__(
684
685
686
687
688
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
689
    ) -> None:  # TODO no super() call here
690
        # Get pre-configured attributes
691
        self._config = self.CONFIG
692

693
        # Use new configurations if there was no preconfiguration
694
        if self.config is None:
695
            self._config = TaskConfig(**config)
696
697
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
698
            if config is not None:
699
                self._config.__dict__.update(config)
700

701
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
702
703
704
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
705

706
707
708
709
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

710
        if self.config.output_type is not None:
711
712
713
714
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
715
            self.OUTPUT_TYPE = self.config.output_type
716

717
718
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
719

720
721
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
722

723
724
725
726
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
727

728
        if self.config.metric_list is None:
729
            # TODO: handle this in TaskConfig.__post_init__ ?
730
731
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

732
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
733
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
734
                self._metric_fn_kwargs[metric_name] = {}
735
736
737
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
738
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
739
        else:
740
            for metric_config in self.config.metric_list:
741
742
743
744
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
745
746
747
748
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
749
750
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
751
                }
Chris's avatar
Chris committed
752
753
754
755
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
756

757
                if self.config.process_results is not None:
758
759
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
760
761
762
763
764
765
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
766
767
768
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
769
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
770

771
                if "aggregation" in metric_config:
772
                    agg_name = metric_config["aggregation"]
773
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
774
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
775
                    elif callable(agg_name):  # noqa: E721
776
777
778
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
779
                else:
780
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
781
                    metric_agg = get_metric_aggregation(metric_name)
782
                    eval_logger.warning(
783
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
784
785
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
786
                    )
787
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
788

789
790
791
792
793
794
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
795
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
796
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
797
                        f"higher_is_better={is_higher_better(metric_name)}"
798
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
799
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
800

801
        self.download(self.config.dataset_kwargs)
802
803
804
        self._training_docs = None
        self._fewshot_docs = None

805
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
806
            self._filters = []
807
            for filter_config in self.config.filter_list:
808
809
810
811
812
813
814
815
816
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
817
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
818
        else:
819
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
820

821
822
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
823
            self.prompt = get_prompt(
824
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
825
            )
826
827
828
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
829
        if self.fewshot_docs() is not None:
830
831
832
833
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
834
835
836
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
853

854
        self.task_docs = self.eval_docs
855

856
        # Test One Doc
857
        self.features = list(self.task_docs.features.keys())
858
859
        self.multiple_input = 0
        self.multiple_target = 0
860
        test_doc = self.task_docs[0]
861
        test_text = self.doc_to_text(test_doc)
862
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
863

864
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
865
            test_choice = self.doc_to_choice(test_doc)
866
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
867
                eval_logger.error("doc_to_choice must return list")
868
869
            else:
                num_choice = len(test_choice)
870

871
            if isinstance(test_text, int):
872
                self.multiple_input = num_choice
873
874
        else:
            test_choice = None
875

876
        if isinstance(test_target, list):
877
            self.multiple_target = len(test_target)
878
        else:
879
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
880
                test_target = test_choice[test_target]
881
            else:
lintangsutawika's avatar
lintangsutawika committed
882
                test_target = str(test_target)
883

884
885
886
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
887
            check_choices = [test_target]
888
889
890
891
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
892
893
                    True
                    if self.config.target_delimiter.rstrip()
894
                    != self.config.target_delimiter
895
                    else False
896
                )
897

898
                if delimiter_has_whitespace and choice_has_whitespace:
899
900
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
901
902
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
903
                    eval_logger.debug(
904
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
905
906
                    )

907
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
908
909
910
911
912
913
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
914
    def has_training_docs(self) -> bool:
915
        if self.config.training_split is not None:
916
917
918
919
            return True
        else:
            return False

baberabb's avatar
baberabb committed
920
    def has_validation_docs(self) -> bool:
921
        if self.config.validation_split is not None:
922
923
924
925
            return True
        else:
            return False

baberabb's avatar
baberabb committed
926
    def has_test_docs(self) -> bool:
927
        if self.config.test_split is not None:
928
929
930
931
            return True
        else:
            return False

baberabb's avatar
baberabb committed
932
    def training_docs(self) -> datasets.Dataset:
933
        if self.has_training_docs():
934
935
936
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
937
                )
938
            return self.dataset[self.config.training_split]
939

baberabb's avatar
baberabb committed
940
    def validation_docs(self) -> datasets.Dataset:
941
        if self.has_validation_docs():
942
943
944
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
945
                )
946
            return self.dataset[self.config.validation_split]
947

baberabb's avatar
baberabb committed
948
    def test_docs(self) -> datasets.Dataset:
949
        if self.has_test_docs():
950
951
952
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
953

954
    def fewshot_docs(self):
955
        if self.config.fewshot_split is not None:
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
958
            return self.dataset[self.config.fewshot_split]
959
        else:
960
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
961
                eval_logger.warning(
962
                    f"Task '{self.config.task}': "
963
964
965
966
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
967

Konrad's avatar
Konrad committed
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
    def convert_chat_history_to_string(self, chat_history: list, tokenizer=None) -> str:
        """Returns chat history tokenized or concatenated as a string.

        :param chat_history: list
            The chat history to convert to a string.
        :param tokenizer:
            Optional tokenizer to use for applying the chat template, if None, the sampler's fewshot_delimiter is used.
        """
        if tokenizer:
            return tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        else:
            return self.sampler.fewshot_delimiter + "".join(
                f"{s['role']}: {s['content']}" + self.sampler.fewshot_delimiter
                for s in chat_history
            )

lintangsutawika's avatar
lintangsutawika committed
986
    @utils.positional_deprecated
Konrad's avatar
Konrad committed
987
988
989
990
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
Konrad's avatar
Konrad committed
991
        system_instruction: Optional[str] = None,
Konrad's avatar
Konrad committed
992
        apply_chat_template: bool = False,
Konrad's avatar
Konrad committed
993
        fewshot_as_multiturn: bool = False,
Konrad's avatar
Konrad committed
994
995
        tokenizer=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
996
997
998
999
1000
1001
1002
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
Konrad's avatar
Konrad committed
1003
1004
        :param  system_instruction: str
            System instruction to be applied to the prompt.
Konrad's avatar
Konrad committed
1005
1006
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
Konrad's avatar
Konrad committed
1007
1008
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Konrad's avatar
Konrad committed
1009
1010
        :param tokenizer:
            The tokenizer to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1011
1012
1013
        :returns: str
            The fewshot context.
        """
Konrad's avatar
Konrad committed
1014
1015
1016
1017
1018
1019
1020

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1021
1022
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1023

Konrad's avatar
Konrad committed
1024
        # create system prompt based on the provided system instruction and description
Konrad's avatar
Konrad committed
1025
        if system_instruction is not None and description:
Konrad's avatar
Konrad committed
1026
1027
1028
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
Konrad's avatar
Konrad committed
1029
        elif system_instruction is not None:
Konrad's avatar
Konrad committed
1030
1031
1032
1033
1034
1035
1036
1037
            system_prompt = system_instruction
        elif description:
            system_prompt = description
        else:
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
Konrad's avatar
Konrad committed
1038
            if apply_chat_template:
Konrad's avatar
Konrad committed
1039
                labeled_examples.append({"role": "system", "content": system_prompt})
Konrad's avatar
Konrad committed
1040
            else:
Konrad's avatar
Konrad committed
1041
1042
1043
1044
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
Konrad's avatar
Konrad committed
1045
            if apply_chat_template:
Konrad's avatar
Konrad committed
1046
                labeled_examples = self.sampler.get_chat_context(
Konrad's avatar
Konrad committed
1047
                    doc, num_fewshot, fewshot_as_multiturn, labeled_examples
Konrad's avatar
Konrad committed
1048
1049
                )
            else:
Konrad's avatar
Konrad committed
1050
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1051
1052

        example = self.doc_to_text(doc)
Konrad's avatar
Konrad committed
1053
1054
1055
        if apply_chat_template:
            if not self.multiple_input:
                if isinstance(example, str):
Konrad's avatar
Konrad committed
1056
                    labeled_examples.append({"role": "user", "content": example})
Konrad's avatar
Konrad committed
1057
                # for loglikelihood create a list of questions with appended choices
Konrad's avatar
Konrad committed
1058
                elif isinstance(example, list):
Konrad's avatar
Konrad committed
1059
                    labeled_examples_list = []
Konrad's avatar
Konrad committed
1060
                    # copy chat history for each example and append the answer
Konrad's avatar
Konrad committed
1061
                    for ex in example:
Konrad's avatar
Konrad committed
1062
                        chat = deepcopy(labeled_examples)
Konrad's avatar
Konrad committed
1063
                        chat.append({"role": "user", "content": ex})
Konrad's avatar
Konrad committed
1064
                        labeled_examples_list.append(
Konrad's avatar
Konrad committed
1065
1066
                            self.convert_chat_history_to_string(chat, tokenizer)
                        )
Konrad's avatar
Konrad committed
1067
                    return labeled_examples_list
Konrad's avatar
Konrad committed
1068
                # if example is an integer, append the choice or convert to string
Konrad's avatar
Konrad committed
1069
1070
1071
                elif isinstance(example, int):
                    if self.config.doc_to_choice is not None:
                        choices = self.doc_to_choice(doc)
Konrad's avatar
Konrad committed
1072
                        labeled_examples.append(
Konrad's avatar
Konrad committed
1073
1074
1075
                            {"role": "user", "content": choices[example]}
                        )
                    else:
Konrad's avatar
Konrad committed
1076
1077
1078
1079
                        labeled_examples.append(
                            {"role": "user", "content": str(example)}
                        )
            return self.convert_chat_history_to_string(labeled_examples, tokenizer)
1080
        else:
Konrad's avatar
Konrad committed
1081
1082
            if self.multiple_input:
                return labeled_examples
Konrad's avatar
Konrad committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1093

1094
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1095
        """Iterates over FilterEnsembles and applies them to instances"""
1096
1097
        if hasattr(self, "_filters"):
            for f in self._filters:
1098
                f.apply(self._instances)
1099
1100
1101
1102
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1103
    def should_decontaminate(self):
1104
        return self.config.should_decontaminate
1105
1106

    def doc_to_decontamination_query(self, doc):
1107
        if self.config.should_decontaminate:
1108
1109
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1110
            else:
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1122

1123
    def _process_doc(self, doc: dict) -> dict:
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1135
1136
        if self.prompt is not None:
            doc_to_text = self.prompt
1137
        else:
1138
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1139

1140
        if isinstance(doc_to_text, int):
1141
            return doc_to_text
1142
        elif isinstance(doc_to_text, str):
1143
            if doc_to_text in self.features:
1144
                # if self.config.doc_to_choice is not None:
1145
1146
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1147
1148
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1149
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1150
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1151
1152
1153
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1154
        elif callable(doc_to_text):
1155
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1156
        # Used when applying a Promptsource template
1157
        elif hasattr(doc_to_text, "apply"):
1158
1159
1160
1161
1162
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1163
                return self.config.fewshot_delimiter
1164
        else:
1165
            print(type(doc_to_text))
1166
            raise TypeError
1167

1168
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1169
1170
        if self.prompt is not None:
            doc_to_target = self.prompt
1171
        else:
1172
            doc_to_target = self.config.doc_to_target
1173

1174
        if isinstance(doc_to_target, int):
1175
            return doc_to_target
1176
        elif isinstance(doc_to_target, str):
1177
            if doc_to_target in self.features:
1178
                # if self.config.doc_to_choice is not None:
1179
1180
1181
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1182
            else:
lintangsutawika's avatar
lintangsutawika committed
1183
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1184
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1185
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1186
1187
1188
1189
1190
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1191
1192
1193
1194
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1195
1196
                else:
                    return target_string
1197
        elif isinstance(doc_to_target, list):
1198
            return doc_to_target
1199
        elif callable(doc_to_target):
1200
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1201
        # Used when applying a Promptsource template
1202
        elif hasattr(doc_to_target, "apply"):
1203
            applied_prompt = doc_to_target.apply(doc)
1204
1205
1206
1207
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1208
                return self.config.fewshot_delimiter
1209
1210
        else:
            raise TypeError
1211

baberabb's avatar
baberabb committed
1212
    def doc_to_choice(self, doc: Any) -> List[str]:
1213
1214
        if self.prompt is not None:
            doc_to_choice = self.prompt
1215
        elif self.config.doc_to_choice is None:
1216
1217
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1218
            doc_to_choice = self.config.doc_to_choice
1219

1220
        if isinstance(doc_to_choice, str):
1221
1222
1223
1224
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1225
        elif isinstance(doc_to_choice, list):
1226
            return doc_to_choice
1227
        elif isinstance(doc_to_choice, dict):
1228
1229
1230
1231
1232
1233
1234
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1235

baberabb's avatar
baberabb committed
1236
1237
1238
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1239
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1240
            arguments = (ctx, self.doc_to_target(doc))
1241
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1242
            arguments = (self.doc_to_target(doc),)
1243
        elif self.OUTPUT_TYPE == "multiple_choice":
1244
            choices = self.doc_to_choice(doc)
1245
            target_delimiter = self.config.target_delimiter
1246
1247
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1248
                cont = self.doc_to_target(doc)
1249
1250
1251
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1252
            else:
1253
                # Otherwise they are placed in the continuation
1254
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1255

1256
            request_list = [
1257
1258
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1259
                    doc=doc,
1260
                    arguments=arg,
1261
                    idx=i,
1262
1263
                    **kwargs,
                )
1264
                for i, arg in enumerate(arguments)
1265
            ]
1266
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1267
            if "acc_mutual_info" in self._metric_fn_list.keys():
1268
1269
1270
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1271
                # here mutual info refers to calculating
1272
1273
1274
1275
1276
1277
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1278
                            doc=doc,
1279
                            arguments=("", "{}".format(choice)),
1280
1281
1282
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1283
                        for i, choice in enumerate(choices)
1284
1285
1286
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1287

1288
        elif self.OUTPUT_TYPE == "generate_until":
1289
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1290
1291

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1292
1293
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1294
1295

    def process_results(self, doc, results):
1296
1297
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1298

1299
        result_dict = {}
1300
        use_metric = list(self._metric_fn_list.keys())
1301
1302
1303
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1304
1305
1306
1307
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1308
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1309
            (loglikelihood,) = results
1310
1311
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1312
            return {
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1328
            }
1329
        elif self.OUTPUT_TYPE == "multiple_choice":
1330
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1331

1332
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1333
            choices = self.doc_to_choice(doc)
1334
1335
            completion_len = np.array([float(len(i)) for i in choices])

1336
1337
            if (
                2 * len(choices) == len(lls)
1338
                and "acc_mutual_info" in self._metric_fn_list.keys()
1339
1340
1341
1342
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1343
1344
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1345
1346
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1347

1348
1349
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1350

1351
1352
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1353
            else:
1354
                gold = self.doc_to_target(doc)
1355
1356

            gold_index_error = False
1357
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1358
1359
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1360
1361
                    gold_index_error = True
            else:
1362
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1363
                    gold = gold if gold < len(choices) else -100
1364
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1365
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1366

Lintang Sutawika's avatar
Lintang Sutawika committed
1367
                if gold == -100:
1368
1369
1370
1371
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1372
                    f"Label index was not in within range of available choices,"
1373
1374
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1375

1376
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1377
1378
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1379
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1380
1381
1382
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1383
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1384
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1385

Lintang Sutawika's avatar
Lintang Sutawika committed
1386
1387
1388
1389
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1390
            result_dict = {
1391
                **({"acc": acc} if "acc" in use_metric else {}),
1392
1393
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1394
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1395
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1396
1397
1398
1399
1400
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1401
1402
            }

1403
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1404
1405
1406
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1407
1408
1409
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1410
        elif self.OUTPUT_TYPE == "generate_until":
1411
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1412
            result = results[0]
1413
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1414
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1415
                # it assumes that doc_to_target returns a number.
1416
1417
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1418
1419
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1420
                gold = list(gold)
Chris's avatar
Chris committed
1421
1422
1423
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1424

lintangsutawika's avatar
lintangsutawika committed
1425
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1426
1427
1428
1429
1430
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1431
1432
1433
1434
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1435
1436
1437
1438
1439
1440
1441
1442
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1443
                    else:
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1465
                else:
1466
                    try:
1467
                        result_score = self._metric_fn_list[metric](
1468
1469
                            references=[gold],
                            predictions=[result],
1470
                            **self._metric_fn_kwargs[metric],
1471
                        )
1472
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1473
                        result_score = self._metric_fn_list[metric]([gold, result])
1474
1475
1476
1477
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1478
        else:
lintangsutawika's avatar
lintangsutawika committed
1479
1480
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1481
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1482
            )
1483
1484
1485

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1486
    def aggregation(self) -> dict:
1487
1488
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1489
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1490
        return self._higher_is_better
1491

Baber Abbasi's avatar
Baber Abbasi committed
1492
1493
1494
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1495
1496
1497
1498
1499
1500
1501
1502
1503
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1504
1505

class MultipleChoiceTask(Task):
1506
    OUTPUT_TYPE = "loglikelihood"
1507

baberabb's avatar
baberabb committed
1508
    def doc_to_target(self, doc: dict) -> str:
1509
1510
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1511
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1512
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1513
1514
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1515
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1516
                doc=doc,
1517
                arguments=(ctx, " {}".format(choice)),
1518
                idx=i,
1519
1520
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1521
1522
            for i, choice in enumerate(doc["choices"])
        ]
1523

1524
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1525
1526
1527
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1539
    def higher_is_better(self) -> dict:
1540
1541
1542
1543
1544
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1545
    def aggregation(self) -> dict:
1546
1547
1548
1549
1550
1551
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1552
class PerplexityTask(Task):
1553
1554
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1555
    def has_training_docs(self) -> bool:
1556
1557
        return False

baberabb's avatar
baberabb committed
1558
    def fewshot_examples(self, k: int, rnd) -> List:
1559
1560
1561
1562
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1563
1564
        return []

baberabb's avatar
baberabb committed
1565
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1566
1567
1568
1569
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1570
1571
1572

        return ""

baberabb's avatar
baberabb committed
1573
    def higher_is_better(self) -> dict:
1574
1575
1576
1577
1578
1579
1580
1581
1582
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1583
    def doc_to_text(self, doc) -> str:
1584
1585
1586
1587
1588
        return ""

    def doc_to_target(self, doc):
        return doc

1589
1590
1591
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1592

lintangsutawika's avatar
lintangsutawika committed
1593
1594
1595
1596
1597
1598
1599
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1600

1601
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1602
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1603
1604
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1605
1606
1607
1608
1609
1610
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1611
    def aggregation(self) -> dict:
1612
1613
1614
1615
1616
1617
1618
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1619
    def count_bytes(cls, doc) -> int:
1620
1621
1622
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1623
    def count_words(cls, doc) -> int:
1624
1625
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))