task.py 61.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
70
71
72
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
95
96
97
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
        if self.generation_kwargs is not None:
101
            if self.output_type != "generate_until":
102
                eval_logger.warning(
103
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
112
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
113
        else:
114
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
117
118
119
120
121
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

125
126
127
    def __getitem__(self, item):
        return getattr(self, item)

128
129
130
    def __setitem__(self, item, value):
        return setattr(self, item, value)

131
    def to_dict(self, keep_callable: bool = False) -> dict:
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
146
147
148
149
150
151
152
153
154
155
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

174
175
176
177
178
179
180
181
182
183
184

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

185
    VERSION: Optional[Union[int, str]] = None
186

187
188
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
189
    DATASET_PATH: Optional[str] = None
190
191

    # The name of a subset within `DATASET_PATH`.
192
    DATASET_NAME: Optional[str] = None
193

194
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
195

196
197
    def __init__(
        self,
198
199
200
201
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
202
    ) -> None:
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
225
226
227
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
228

229
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
230

lintangsutawika's avatar
lintangsutawika committed
231
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
232
233
234
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
235

236
237
238
239
240
241
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
266
267
268
269
270
271
272
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
273

274
    @property
275
    def config(self) -> TaskConfig:
276
277
278
        """Returns the TaskConfig associated with this class."""
        return self._config

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

294
    def training_docs(self) -> Iterable:
295
296
297
298
299
300
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

301
    def validation_docs(self) -> Iterable:
302
303
304
305
306
307
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

308
    def test_docs(self) -> Iterable:
309
310
311
312
313
314
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

315
    def fewshot_docs(self) -> Iterable:
316
317
318
319
320
321
322
323
324
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
325
            eval_logger.warning(
326
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
327
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
328
            )
329
330
            return self.test_docs()

331
    def _process_doc(self, doc: dict) -> dict:
332
333
334
335
336
337
338
339
340
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
341

342
    @property
343
    def instances(self) -> List[Instance]:
344
345
346
347
348
349
350
351
352
353
354
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

355
356
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
357
358
359
360
361
362
363
364
365
366
367
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

368
369
    def build_all_requests(
        self,
370
        *,
371
372
373
374
375
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
Konrad's avatar
Konrad committed
376
        system_instruction=None,
Konrad's avatar
Konrad committed
377
378
        apply_chat_template=False,
        tokenizer=None,
379
    ) -> None:
380
        """Build a set of Instances for a task, and store them in task.instances"""
381
382
383
384

        # used with caching
        og_limit = limit

385
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
401
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
402

403
        instances = []
404
405
406
407
408
409
410
411
412
413

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
414
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
415
416
417
418
419
420
421
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
422
        ):
423
            # sample fewshot context #TODO: need to offset doc_id by rank now!
424
            fewshot_ctx = self.fewshot_context(
425
                doc,
426
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
Konrad's avatar
Konrad committed
427
                system_instruction,
Konrad's avatar
Konrad committed
428
429
                apply_chat_template,
                tokenizer,
430
            )
431

432
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
433
434
435
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
436
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
437
            )
438
439
440
441

            if not isinstance(inst, list):
                inst = [inst]

442
443
444
445
446
447
448
449
450
451
452
453
454
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
455

456
457
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
458

459
460
461
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
478
            The number of times each instance in a dataset is inferred on. Defaults to 1,
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

514
515
516
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
517
518
519
520
521
522
523
524
525
526
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

527
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
528
    def fewshot_context(
529
530
531
        self,
        doc,
        num_fewshot,
532
        rnd=None,
533
        description=None,
lintangsutawika's avatar
lintangsutawika committed
534
    ):
535
536
537
538
539
540
541
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
542
543
544
545
546
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
547
548
549
        :returns: str
            The fewshot context.
        """
550
        if rnd is None:
551
552
553
554
555
556
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
557

558
        description = description if description else ""
559
560

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
561
            labeled_examples = ""
562
        else:
lintangsutawika's avatar
lintangsutawika committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
587
            )
588
589

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
590
        return description + labeled_examples + example
591

592
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
593
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
594
595
        if hasattr(self, "_filters"):
            for f in self._filters:
596
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
597
598
599
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
600

baberabb's avatar
baberabb committed
601
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
602
        """Returns the config as a dictionary."""
603
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
604
        # (num_fewshot)
605
        return self.config.to_dict()
606

Baber Abbasi's avatar
Baber Abbasi committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

647
648
649
650
651
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

652
653
654
655
656
657
658
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
659
660
661
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
662
663
664
665
666
667
668
669
670
671
672
673
674

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

675
676

class ConfigurableTask(Task):
677
    VERSION = "Yaml"
678
    OUTPUT_TYPE = None
679
    CONFIG = None
680
681

    def __init__(
682
683
684
685
686
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
687
    ) -> None:  # TODO no super() call here
688
        # Get pre-configured attributes
689
        self._config = self.CONFIG
690

691
        # Use new configurations if there was no preconfiguration
692
        if self.config is None:
693
            self._config = TaskConfig(**config)
694
695
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
696
            if config is not None:
697
                self._config.__dict__.update(config)
698

699
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
700
701
702
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
703

704
705
706
707
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

708
        if self.config.output_type is not None:
709
710
711
712
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
713
            self.OUTPUT_TYPE = self.config.output_type
714

715
716
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
717

718
719
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
720

721
722
723
724
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
725

726
        if self.config.metric_list is None:
727
            # TODO: handle this in TaskConfig.__post_init__ ?
728
729
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

730
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
731
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
732
                self._metric_fn_kwargs[metric_name] = {}
733
734
735
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
736
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
737
        else:
738
            for metric_config in self.config.metric_list:
739
740
741
742
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
743
744
745
746
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
747
748
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
749
                }
Chris's avatar
Chris committed
750
751
752
753
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
754

755
                if self.config.process_results is not None:
756
757
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
758
759
760
761
762
763
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
764
765
766
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
767
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
768

769
                if "aggregation" in metric_config:
770
                    agg_name = metric_config["aggregation"]
771
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
772
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
773
                    elif callable(agg_name):  # noqa: E721
774
775
776
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
777
                else:
778
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
779
                    metric_agg = get_metric_aggregation(metric_name)
780
                    eval_logger.warning(
781
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
782
783
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
784
                    )
785
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
786

787
788
789
790
791
792
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
793
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
794
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
795
                        f"higher_is_better={is_higher_better(metric_name)}"
796
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
797
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
798

799
        self.download(self.config.dataset_kwargs)
800
801
802
        self._training_docs = None
        self._fewshot_docs = None

803
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
804
            self._filters = []
805
            for filter_config in self.config.filter_list:
806
807
808
809
810
811
812
813
814
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
815
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
816
        else:
817
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
818

819
820
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
821
            self.prompt = get_prompt(
822
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
823
            )
824
825
826
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
827
        if self.fewshot_docs() is not None:
828
829
830
831
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
832
833
834
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
851

852
        self.task_docs = self.eval_docs
853

854
        # Test One Doc
855
        self.features = list(self.task_docs.features.keys())
856
857
        self.multiple_input = 0
        self.multiple_target = 0
858
        test_doc = self.task_docs[0]
859
        test_text = self.doc_to_text(test_doc)
860
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
861

862
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
863
            test_choice = self.doc_to_choice(test_doc)
864
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
865
                eval_logger.error("doc_to_choice must return list")
866
867
            else:
                num_choice = len(test_choice)
868

869
            if isinstance(test_text, int):
870
                self.multiple_input = num_choice
871
872
        else:
            test_choice = None
873

874
        if isinstance(test_target, list):
875
            self.multiple_target = len(test_target)
876
        else:
877
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
878
                test_target = test_choice[test_target]
879
            else:
lintangsutawika's avatar
lintangsutawika committed
880
                test_target = str(test_target)
881

882
883
884
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
885
            check_choices = [test_target]
886
887
888
889
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
890
891
                    True
                    if self.config.target_delimiter.rstrip()
892
                    != self.config.target_delimiter
893
                    else False
894
                )
895

896
                if delimiter_has_whitespace and choice_has_whitespace:
897
898
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
899
900
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
901
                    eval_logger.debug(
902
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
903
904
                    )

905
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
906
907
908
909
910
911
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
912
    def has_training_docs(self) -> bool:
913
        if self.config.training_split is not None:
914
915
916
917
            return True
        else:
            return False

baberabb's avatar
baberabb committed
918
    def has_validation_docs(self) -> bool:
919
        if self.config.validation_split is not None:
920
921
922
923
            return True
        else:
            return False

baberabb's avatar
baberabb committed
924
    def has_test_docs(self) -> bool:
925
        if self.config.test_split is not None:
926
927
928
929
            return True
        else:
            return False

baberabb's avatar
baberabb committed
930
    def training_docs(self) -> datasets.Dataset:
931
        if self.has_training_docs():
932
933
934
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
935
                )
936
            return self.dataset[self.config.training_split]
937

baberabb's avatar
baberabb committed
938
    def validation_docs(self) -> datasets.Dataset:
939
        if self.has_validation_docs():
940
941
942
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
943
                )
944
            return self.dataset[self.config.validation_split]
945

baberabb's avatar
baberabb committed
946
    def test_docs(self) -> datasets.Dataset:
947
        if self.has_test_docs():
948
949
950
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
951

952
    def fewshot_docs(self):
953
        if self.config.fewshot_split is not None:
954
955
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
956
            return self.dataset[self.config.fewshot_split]
957
        else:
958
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
959
                eval_logger.warning(
960
                    f"Task '{self.config.task}': "
961
962
963
964
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
965

Konrad's avatar
Konrad committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    def convert_chat_history_to_string(self, chat_history: list, tokenizer=None) -> str:
        """Returns chat history tokenized or concatenated as a string.

        :param chat_history: list
            The chat history to convert to a string.
        :param tokenizer:
            Optional tokenizer to use for applying the chat template, if None, the sampler's fewshot_delimiter is used.
        """
        if tokenizer:
            return tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        else:
            return self.sampler.fewshot_delimiter + "".join(
                f"{s['role']}: {s['content']}" + self.sampler.fewshot_delimiter
                for s in chat_history
            )

lintangsutawika's avatar
lintangsutawika committed
984
    @utils.positional_deprecated
Konrad's avatar
Konrad committed
985
986
987
988
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
Konrad's avatar
Konrad committed
989
        system_instruction: str = None,
Konrad's avatar
Konrad committed
990
991
992
        apply_chat_template: bool = False,
        tokenizer=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
993
994
995
996
997
998
999
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
Konrad's avatar
Konrad committed
1000
1001
        :param  system_instruction: str
            System instruction to be applied to the prompt.
Konrad's avatar
Konrad committed
1002
1003
1004
1005
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param tokenizer:
            The tokenizer to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1006
1007
1008
        :returns: str
            The fewshot context.
        """
Konrad's avatar
Konrad committed
1009
1010
1011
1012
1013
1014
1015

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1016
1017
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1018

Konrad's avatar
Konrad committed
1019
        # create system prompt based on the provided system instruction and description
Konrad's avatar
Konrad committed
1020
        if system_instruction is not None and description:
Konrad's avatar
Konrad committed
1021
1022
1023
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
Konrad's avatar
Konrad committed
1024
        elif system_instruction is not None:
Konrad's avatar
Konrad committed
1025
1026
1027
1028
1029
1030
1031
1032
            system_prompt = system_instruction
        elif description:
            system_prompt = description
        else:
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
Konrad's avatar
Konrad committed
1033
            if apply_chat_template:
Konrad's avatar
Konrad committed
1034
                labeled_examples.append({"role": "system", "content": system_prompt})
Konrad's avatar
Konrad committed
1035
            else:
Konrad's avatar
Konrad committed
1036
1037
1038
1039
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
Konrad's avatar
Konrad committed
1040
            if apply_chat_template:
Konrad's avatar
Konrad committed
1041
1042
                labeled_examples = self.sampler.get_chat_context(
                    doc, num_fewshot, labeled_examples
Konrad's avatar
Konrad committed
1043
1044
                )
            else:
Konrad's avatar
Konrad committed
1045
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1046
1047

        example = self.doc_to_text(doc)
Konrad's avatar
Konrad committed
1048
1049
1050
        if apply_chat_template:
            if not self.multiple_input:
                if isinstance(example, str):
Konrad's avatar
Konrad committed
1051
                    labeled_examples.append({"role": "user", "content": example})
Konrad's avatar
Konrad committed
1052
                elif isinstance(example, list):
Konrad's avatar
Konrad committed
1053
                    labeled_examples_list = []
Konrad's avatar
Konrad committed
1054
                    for ex in example:
Konrad's avatar
Konrad committed
1055
                        chat = deepcopy(labeled_examples)
Konrad's avatar
Konrad committed
1056
                        chat.append({"role": "user", "content": ex})
Konrad's avatar
Konrad committed
1057
                        labeled_examples_list.append(
Konrad's avatar
Konrad committed
1058
1059
                            self.convert_chat_history_to_string(chat, tokenizer)
                        )
Konrad's avatar
Konrad committed
1060
                    return labeled_examples_list
Konrad's avatar
Konrad committed
1061
1062
1063
                elif isinstance(example, int):
                    if self.config.doc_to_choice is not None:
                        choices = self.doc_to_choice(doc)
Konrad's avatar
Konrad committed
1064
                        labeled_examples.append(
Konrad's avatar
Konrad committed
1065
1066
1067
                            {"role": "user", "content": choices[example]}
                        )
                    else:
Konrad's avatar
Konrad committed
1068
1069
1070
1071
                        labeled_examples.append(
                            {"role": "user", "content": str(example)}
                        )
            return self.convert_chat_history_to_string(labeled_examples, tokenizer)
1072
        else:
Konrad's avatar
Konrad committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            if self.multiple_input:
                return labeled_examples
            else:
                if isinstance(example, str):
                    return labeled_examples + example
                elif isinstance(example, list):
                    return [labeled_examples + ex for ex in example]
                elif isinstance(example, int):
                    if self.config.doc_to_choice is not None:
                        choices = self.doc_to_choice(doc)
                        return labeled_examples + choices[example]
                    else:
                        return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1086

1087
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1088
        """Iterates over FilterEnsembles and applies them to instances"""
1089
1090
        if hasattr(self, "_filters"):
            for f in self._filters:
1091
                f.apply(self._instances)
1092
1093
1094
1095
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1096
    def should_decontaminate(self):
1097
        return self.config.should_decontaminate
1098
1099

    def doc_to_decontamination_query(self, doc):
1100
        if self.config.should_decontaminate:
1101
1102
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1103
            else:
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1115

1116
    def _process_doc(self, doc: dict) -> dict:
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1128
1129
        if self.prompt is not None:
            doc_to_text = self.prompt
1130
        else:
1131
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1132

1133
        if isinstance(doc_to_text, int):
1134
            return doc_to_text
1135
        elif isinstance(doc_to_text, str):
1136
            if doc_to_text in self.features:
1137
                # if self.config.doc_to_choice is not None:
1138
1139
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1140
1141
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1142
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1143
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1144
1145
1146
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1147
        elif callable(doc_to_text):
1148
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1149
        # Used when applying a Promptsource template
1150
        elif hasattr(doc_to_text, "apply"):
1151
1152
1153
1154
1155
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1156
                return self.config.fewshot_delimiter
1157
        else:
1158
            print(type(doc_to_text))
1159
            raise TypeError
1160

1161
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1162
1163
        if self.prompt is not None:
            doc_to_target = self.prompt
1164
        else:
1165
            doc_to_target = self.config.doc_to_target
1166

1167
        if isinstance(doc_to_target, int):
1168
            return doc_to_target
1169
        elif isinstance(doc_to_target, str):
1170
            if doc_to_target in self.features:
1171
                # if self.config.doc_to_choice is not None:
1172
1173
1174
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1175
            else:
lintangsutawika's avatar
lintangsutawika committed
1176
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1177
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1178
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1179
1180
1181
1182
1183
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1184
1185
1186
1187
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1188
1189
                else:
                    return target_string
1190
        elif isinstance(doc_to_target, list):
1191
            return doc_to_target
1192
        elif callable(doc_to_target):
1193
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1194
        # Used when applying a Promptsource template
1195
        elif hasattr(doc_to_target, "apply"):
1196
            applied_prompt = doc_to_target.apply(doc)
1197
1198
1199
1200
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1201
                return self.config.fewshot_delimiter
1202
1203
        else:
            raise TypeError
1204

baberabb's avatar
baberabb committed
1205
    def doc_to_choice(self, doc: Any) -> List[str]:
1206
1207
        if self.prompt is not None:
            doc_to_choice = self.prompt
1208
        elif self.config.doc_to_choice is None:
1209
1210
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1211
            doc_to_choice = self.config.doc_to_choice
1212

1213
        if isinstance(doc_to_choice, str):
1214
1215
1216
1217
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1218
        elif isinstance(doc_to_choice, list):
1219
            return doc_to_choice
1220
        elif isinstance(doc_to_choice, dict):
1221
1222
1223
1224
1225
1226
1227
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1228

baberabb's avatar
baberabb committed
1229
1230
1231
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1232
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1233
            arguments = (ctx, self.doc_to_target(doc))
1234
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1235
            arguments = (self.doc_to_target(doc),)
1236
        elif self.OUTPUT_TYPE == "multiple_choice":
1237
            choices = self.doc_to_choice(doc)
1238
            target_delimiter = self.config.target_delimiter
1239
1240
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1241
                cont = self.doc_to_target(doc)
1242
1243
1244
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1245
            else:
1246
                # Otherwise they are placed in the continuation
1247
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1248

1249
            request_list = [
1250
1251
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1252
                    doc=doc,
1253
                    arguments=arg,
1254
                    idx=i,
1255
1256
                    **kwargs,
                )
1257
                for i, arg in enumerate(arguments)
1258
            ]
1259
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1260
            if "acc_mutual_info" in self._metric_fn_list.keys():
1261
1262
1263
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1264
                # here mutual info refers to calculating
1265
1266
1267
1268
1269
1270
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1271
                            doc=doc,
1272
                            arguments=("", "{}".format(choice)),
1273
1274
1275
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1276
                        for i, choice in enumerate(choices)
1277
1278
1279
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1280

1281
        elif self.OUTPUT_TYPE == "generate_until":
1282
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1283
1284

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1285
1286
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1287
1288

    def process_results(self, doc, results):
1289
1290
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1291

1292
        result_dict = {}
1293
        use_metric = list(self._metric_fn_list.keys())
1294
1295
1296
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1297
1298
1299
1300
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1301
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1302
            (loglikelihood,) = results
1303
1304
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1305
            return {
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1321
            }
1322
        elif self.OUTPUT_TYPE == "multiple_choice":
1323
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1324

1325
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1326
            choices = self.doc_to_choice(doc)
1327
1328
            completion_len = np.array([float(len(i)) for i in choices])

1329
1330
            if (
                2 * len(choices) == len(lls)
1331
                and "acc_mutual_info" in self._metric_fn_list.keys()
1332
1333
1334
1335
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1336
1337
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1338
1339
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1340

1341
1342
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1343

1344
1345
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1346
            else:
1347
                gold = self.doc_to_target(doc)
1348
1349

            gold_index_error = False
1350
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1351
1352
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1353
1354
                    gold_index_error = True
            else:
1355
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1356
                    gold = gold if gold < len(choices) else -100
1357
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1358
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1359

Lintang Sutawika's avatar
Lintang Sutawika committed
1360
                if gold == -100:
1361
1362
1363
1364
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1365
                    f"Label index was not in within range of available choices,"
1366
1367
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1368

1369
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1370
1371
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1372
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1373
1374
1375
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1376
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1377
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1378

Lintang Sutawika's avatar
Lintang Sutawika committed
1379
1380
1381
1382
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1383
            result_dict = {
1384
                **({"acc": acc} if "acc" in use_metric else {}),
1385
1386
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1387
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1388
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1389
1390
1391
1392
1393
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1394
1395
            }

1396
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1397
1398
1399
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1400
1401
1402
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1403
        elif self.OUTPUT_TYPE == "generate_until":
1404
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1405
            result = results[0]
1406
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1407
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1408
                # it assumes that doc_to_target returns a number.
1409
1410
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1411
1412
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1413
                gold = list(gold)
Chris's avatar
Chris committed
1414
1415
1416
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1417

lintangsutawika's avatar
lintangsutawika committed
1418
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1419
1420
1421
1422
1423
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1424
1425
1426
1427
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1428
1429
1430
1431
1432
1433
1434
1435
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1436
                    else:
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1458
                else:
1459
                    try:
1460
                        result_score = self._metric_fn_list[metric](
1461
1462
                            references=[gold],
                            predictions=[result],
1463
                            **self._metric_fn_kwargs[metric],
1464
                        )
1465
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1466
                        result_score = self._metric_fn_list[metric]([gold, result])
1467
1468
1469
1470
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1471
        else:
lintangsutawika's avatar
lintangsutawika committed
1472
1473
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1474
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1475
            )
1476
1477
1478

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1479
    def aggregation(self) -> dict:
1480
1481
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1482
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1483
        return self._higher_is_better
1484

Baber Abbasi's avatar
Baber Abbasi committed
1485
1486
1487
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1488
1489
1490
1491
1492
1493
1494
1495
1496
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1497
1498

class MultipleChoiceTask(Task):
1499
    OUTPUT_TYPE = "loglikelihood"
1500

baberabb's avatar
baberabb committed
1501
    def doc_to_target(self, doc: dict) -> str:
1502
1503
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1504
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1505
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1506
1507
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1508
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1509
                doc=doc,
1510
                arguments=(ctx, " {}".format(choice)),
1511
                idx=i,
1512
1513
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1514
1515
            for i, choice in enumerate(doc["choices"])
        ]
1516

1517
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1518
1519
1520
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1532
    def higher_is_better(self) -> dict:
1533
1534
1535
1536
1537
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1538
    def aggregation(self) -> dict:
1539
1540
1541
1542
1543
1544
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1545
class PerplexityTask(Task):
1546
1547
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1548
    def has_training_docs(self) -> bool:
1549
1550
        return False

baberabb's avatar
baberabb committed
1551
    def fewshot_examples(self, k: int, rnd) -> List:
1552
1553
1554
1555
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1556
1557
        return []

baberabb's avatar
baberabb committed
1558
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1559
1560
1561
1562
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1563
1564
1565

        return ""

baberabb's avatar
baberabb committed
1566
    def higher_is_better(self) -> dict:
1567
1568
1569
1570
1571
1572
1573
1574
1575
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1576
    def doc_to_text(self, doc) -> str:
1577
1578
1579
1580
1581
        return ""

    def doc_to_target(self, doc):
        return doc

1582
1583
1584
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1585

lintangsutawika's avatar
lintangsutawika committed
1586
1587
1588
1589
1590
1591
1592
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1593

1594
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1595
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1596
1597
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1598
1599
1600
1601
1602
1603
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1604
    def aggregation(self) -> dict:
1605
1606
1607
1608
1609
1610
1611
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1612
    def count_bytes(cls, doc) -> int:
1613
1614
1615
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1616
    def count_words(cls, doc) -> int:
1617
1618
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))