task.py 64.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
    group: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
101
102
103
104
105
106
107
108
109
110
111
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
112
        if self.generation_kwargs is not None:
113
            if self.output_type != "generate_until":
114
                eval_logger.warning(
115
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
120
121
122
123
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
124
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
125
        else:
126
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
127
128
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
129
130
131
132
133
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
                    "do_sample": False,
                }
136

137
138
139
    def __getitem__(self, item):
        return getattr(self, item)

140
141
142
    def __setitem__(self, item, value):
        return setattr(self, item, value)

143
    def to_dict(self, keep_callable: bool = False) -> dict:
144
145
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
146
        Used for dumping results alongside full task configuration
147

haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
151
152
153
154
155
156
157
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
158
159
160
161
162
163
164
165
166
167
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
168
        return cfg_dict
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

186
187
188
189
190
191
192
193
194
195
196

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

197
    VERSION: Optional[Union[int, str]] = None
198

199
200
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
201
    DATASET_PATH: Optional[str] = None
202
203

    # The name of a subset within `DATASET_PATH`.
204
    DATASET_NAME: Optional[str] = None
205

206
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
207

208
209
    def __init__(
        self,
210
211
212
213
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
214
    ) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
237
238
239
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
240

241
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
242

lintangsutawika's avatar
lintangsutawika committed
243
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
244
245
246
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
247

248
249
250
251
252
253
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
278
279
280
281
282
283
284
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
285

286
    @property
287
    def config(self) -> TaskConfig:
288
289
290
        """Returns the TaskConfig associated with this class."""
        return self._config

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

306
    def training_docs(self) -> Iterable:
307
308
309
310
311
312
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
    def validation_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def test_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def fewshot_docs(self) -> Iterable:
328
329
330
331
332
333
334
335
336
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
337
            eval_logger.warning(
338
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
339
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
340
            )
341
342
            return self.test_docs()

343
    def _process_doc(self, doc: dict) -> dict:
344
345
346
347
348
349
350
351
352
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
353

354
    @property
355
    def instances(self) -> List[Instance]:
356
357
358
359
360
361
362
363
364
365
366
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

367
368
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
369
370
371
372
373
374
375
376
377
378
379
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

380
381
    def build_all_requests(
        self,
382
        *,
383
384
385
386
387
388
389
390
391
392
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
393
    ) -> None:
394
        """Build a set of Instances for a task, and store them in task.instances"""
395
396
397
398

        # used with caching
        og_limit = limit

399
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
400
401
402
403
404
405
406
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
407
        cache_key += f"-tokenizer{tokenizer_name}"
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
423
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
424

425
        instances = []
426
427
428
429
430
431
432
433
434
435

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
436
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
437
438
439
440
441
442
443
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
444
        ):
445
            # sample fewshot context #TODO: need to offset doc_id by rank now!
446
            fewshot_ctx = self.fewshot_context(
447
                doc,
448
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
449
450
451
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
452
                chat_template,
453
            )
454

455
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
456
457
458
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
459
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
460
            )
461
462
463
464

            if not isinstance(inst, list):
                inst = [inst]

465
466
467
468
469
470
471
472
473
474
475
476
477
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
478

479
480
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
481

482
483
484
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
501
            The number of times each instance in a dataset is inferred on. Defaults to 1,
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

537
538
539
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
542
543
544
545
546
547
548
549
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

550
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
551
    def fewshot_context(
552
553
554
        self,
        doc,
        num_fewshot,
555
        rnd=None,
556
        description=None,
lintangsutawika's avatar
lintangsutawika committed
557
    ):
558
559
560
561
562
563
564
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
565
566
567
568
569
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
570
571
572
        :returns: str
            The fewshot context.
        """
573
        if rnd is None:
574
575
576
577
578
579
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
580

581
        description = description if description else ""
582
583

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
584
            labeled_examples = ""
585
        else:
lintangsutawika's avatar
lintangsutawika committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
610
            )
611
612

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
613
        return description + labeled_examples + example
614

615
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
616
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
617
618
        if hasattr(self, "_filters"):
            for f in self._filters:
619
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
620
621
622
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
623

baberabb's avatar
baberabb committed
624
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
625
        """Returns the config as a dictionary."""
626
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
627
        # (num_fewshot)
628
        return self.config.to_dict()
629

Baber Abbasi's avatar
Baber Abbasi committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

670
671
672
673
674
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

675
676
677
678
679
680
681
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
682
683
684
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
685
686
687
688
689
690
691
692
693
694
695
696
697

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

698
699

class ConfigurableTask(Task):
700
    VERSION = "Yaml"
701
    OUTPUT_TYPE = None
702
    CONFIG = None
703
704

    def __init__(
705
706
707
708
709
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
710
    ) -> None:  # TODO no super() call here
711
        # Get pre-configured attributes
712
        self._config = self.CONFIG
713

714
        # Use new configurations if there was no preconfiguration
715
        if self.config is None:
716
            self._config = TaskConfig(**config)
717
718
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
719
            if config is not None:
720
                self._config.__dict__.update(config)
721

722
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
723
724
725
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
726

727
728
729
730
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

731
        if self.config.output_type is not None:
732
733
734
735
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
736
            self.OUTPUT_TYPE = self.config.output_type
737

738
739
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
740

741
742
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
743

744
745
746
747
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
748

749
        if self.config.metric_list is None:
750
            # TODO: handle this in TaskConfig.__post_init__ ?
751
752
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

753
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
754
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
755
                self._metric_fn_kwargs[metric_name] = {}
756
757
758
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
759
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
760
        else:
761
            for metric_config in self.config.metric_list:
762
763
764
765
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
766
767
768
769
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
770
771
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
772
                }
Chris's avatar
Chris committed
773
774
775
776
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
777

778
                if self.config.process_results is not None:
779
780
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
781
782
783
784
785
786
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
787
788
789
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
790
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
791

792
                if "aggregation" in metric_config:
793
                    agg_name = metric_config["aggregation"]
794
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
795
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
796
                    elif callable(agg_name):  # noqa: E721
797
798
799
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
800
                else:
801
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
802
                    metric_agg = get_metric_aggregation(metric_name)
803
                    eval_logger.warning(
804
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
805
806
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
807
                    )
808
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
809

810
811
812
813
814
815
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
816
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
817
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
818
                        f"higher_is_better={is_higher_better(metric_name)}"
819
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
820
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
821

822
        self.download(self.config.dataset_kwargs)
823
824
825
        self._training_docs = None
        self._fewshot_docs = None

826
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
827
            self._filters = []
828
            for filter_config in self.config.filter_list:
829
830
831
832
833
834
835
836
837
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
838
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
839
        else:
840
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
841

842
843
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
844
            self.prompt = get_prompt(
845
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
846
            )
847
848
849
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
850
        if self.fewshot_docs() is not None:
851
852
853
854
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
855
856
857
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
874

875
        self.task_docs = self.eval_docs
876

877
        # Test One Doc
878
        self.features = list(self.task_docs.features.keys())
879
880
        self.multiple_input = 0
        self.multiple_target = 0
881
        test_doc = self.task_docs[0]
882
        test_text = self.doc_to_text(test_doc)
883
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
884

885
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
886
            test_choice = self.doc_to_choice(test_doc)
887
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
888
                eval_logger.error("doc_to_choice must return list")
889
890
            else:
                num_choice = len(test_choice)
891

892
            if isinstance(test_text, int):
893
                self.multiple_input = num_choice
894
895
        else:
            test_choice = None
896

897
        if isinstance(test_target, list):
898
            self.multiple_target = len(test_target)
899
        else:
900
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
901
                test_target = test_choice[test_target]
902
            else:
lintangsutawika's avatar
lintangsutawika committed
903
                test_target = str(test_target)
904

905
906
907
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
908
            check_choices = [test_target]
909
910
911
912
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
913
914
                    True
                    if self.config.target_delimiter.rstrip()
915
                    != self.config.target_delimiter
916
                    else False
917
                )
918

919
                if delimiter_has_whitespace and choice_has_whitespace:
920
921
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
922
923
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
924
                    eval_logger.debug(
925
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
926
927
                    )

928
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
929
930
931
932
933
934
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
935
    def has_training_docs(self) -> bool:
936
        if self.config.training_split is not None:
937
938
939
940
            return True
        else:
            return False

baberabb's avatar
baberabb committed
941
    def has_validation_docs(self) -> bool:
942
        if self.config.validation_split is not None:
943
944
945
946
            return True
        else:
            return False

baberabb's avatar
baberabb committed
947
    def has_test_docs(self) -> bool:
948
        if self.config.test_split is not None:
949
950
951
952
            return True
        else:
            return False

baberabb's avatar
baberabb committed
953
    def training_docs(self) -> datasets.Dataset:
954
        if self.has_training_docs():
955
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
958
                )
959
            return self.dataset[self.config.training_split]
960

baberabb's avatar
baberabb committed
961
    def validation_docs(self) -> datasets.Dataset:
962
        if self.has_validation_docs():
963
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
966
                )
967
            return self.dataset[self.config.validation_split]
968

baberabb's avatar
baberabb committed
969
    def test_docs(self) -> datasets.Dataset:
970
        if self.has_test_docs():
971
972
973
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
974

975
    def fewshot_docs(self):
976
        if self.config.fewshot_split is not None:
977
978
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
979
            return self.dataset[self.config.fewshot_split]
980
981
982
983
984
985
986
987
988
989
990
991
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
992
        else:
993
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
994
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
995
                    f"[Task: {self.config.task}] "
996
997
998
999
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1000

KonradSzafer's avatar
KonradSzafer committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1022
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1023
1024
1025
1026
1027
1028
1029
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1030
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1031
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1032
1033
1034
1035
1036
1037
1038
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1039
1040
1041
1042
1043
1044
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1045
1046
        :param chat_template: Callable
            Chat template to be applied to the fewshot context.
lintangsutawika's avatar
lintangsutawika committed
1047
1048
1049
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1050
1051
1052
1053
1054
1055
1056

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1057
1058
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1059

KonradSzafer's avatar
KonradSzafer committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1069
        else:
KonradSzafer's avatar
KonradSzafer committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1089
1090

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1091
1092
        if apply_chat_template:
            if self.multiple_input:
1093
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1105
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1119
            return chat_template(labeled_examples)
1120
        else:
KonradSzafer's avatar
KonradSzafer committed
1121
1122
            if self.multiple_input:
                return labeled_examples
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1133

1134
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1135
        """Iterates over FilterEnsembles and applies them to instances"""
1136
1137
        if hasattr(self, "_filters"):
            for f in self._filters:
1138
                f.apply(self._instances)
1139
1140
1141
1142
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1143
    def should_decontaminate(self):
1144
        return self.config.should_decontaminate
1145
1146

    def doc_to_decontamination_query(self, doc):
1147
        if self.config.should_decontaminate:
1148
1149
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1150
            else:
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1162

1163
    def _process_doc(self, doc: dict) -> dict:
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1174
    def doc_to_text(self, doc, doc_to_text=None):
1175
1176
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1177
1178
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1179
        else:
1180
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1181

1182
        if isinstance(doc_to_text, int):
1183
            return doc_to_text
1184
        elif isinstance(doc_to_text, str):
1185
            if doc_to_text in self.features:
1186
                # if self.config.doc_to_choice is not None:
1187
1188
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1189
1190
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1191
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1192
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1193
1194
1195
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1196
        elif callable(doc_to_text):
1197
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1198
        # Used when applying a Promptsource template
1199
        elif hasattr(doc_to_text, "apply"):
1200
1201
1202
1203
1204
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1205
                return self.config.fewshot_delimiter
1206
        else:
1207
            print(type(doc_to_text))
1208
            raise TypeError
1209

Yu Shi Jie's avatar
Yu Shi Jie committed
1210
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1211
1212
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1213
1214
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1215
        else:
1216
            doc_to_target = self.config.doc_to_target
1217

1218
        if isinstance(doc_to_target, int):
1219
            return doc_to_target
1220
        elif isinstance(doc_to_target, str):
1221
            if doc_to_target in self.features:
1222
                # if self.config.doc_to_choice is not None:
1223
1224
1225
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1226
            else:
lintangsutawika's avatar
lintangsutawika committed
1227
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1228
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1229
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1230
1231
1232
1233
1234
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1235
1236
1237
1238
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1239
1240
                else:
                    return target_string
1241
        elif isinstance(doc_to_target, list):
1242
            return doc_to_target
1243
        elif callable(doc_to_target):
1244
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1245
        # Used when applying a Promptsource template
1246
        elif hasattr(doc_to_target, "apply"):
1247
            applied_prompt = doc_to_target.apply(doc)
1248
1249
1250
1251
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1252
                return self.config.fewshot_delimiter
1253
1254
        else:
            raise TypeError
1255

Yu Shi Jie's avatar
Yu Shi Jie committed
1256
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1257
1258
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1259
1260
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1261
        elif self.config.doc_to_choice is None:
1262
1263
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1264
            doc_to_choice = self.config.doc_to_choice
1265

1266
        if isinstance(doc_to_choice, str):
1267
1268
1269
1270
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1271
        elif isinstance(doc_to_choice, list):
1272
            return doc_to_choice
1273
        elif isinstance(doc_to_choice, dict):
1274
1275
1276
1277
1278
1279
1280
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1281

baberabb's avatar
baberabb committed
1282
1283
1284
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1285
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1286
            arguments = (ctx, self.doc_to_target(doc))
1287
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1288
            arguments = (self.doc_to_target(doc),)
1289
        elif self.OUTPUT_TYPE == "multiple_choice":
1290
            choices = self.doc_to_choice(doc)
1291
            target_delimiter = self.config.target_delimiter
1292
1293
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1294
                cont = self.doc_to_target(doc)
1295
1296
1297
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1298
            else:
1299
                # Otherwise they are placed in the continuation
1300
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1301

1302
            request_list = [
1303
1304
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1305
                    doc=doc,
1306
                    arguments=arg,
1307
                    idx=i,
1308
1309
                    **kwargs,
                )
1310
                for i, arg in enumerate(arguments)
1311
            ]
1312
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1313
            if "acc_mutual_info" in self._metric_fn_list.keys():
1314
1315
1316
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1317
                # here mutual info refers to calculating
1318
1319
1320
1321
1322
1323
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1324
                            doc=doc,
1325
                            arguments=("", "{}".format(choice)),
1326
1327
1328
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1329
                        for i, choice in enumerate(choices)
1330
1331
1332
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1333

1334
        elif self.OUTPUT_TYPE == "generate_until":
1335
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1336
1337

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1338
1339
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1340
1341

    def process_results(self, doc, results):
1342
1343
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1344

1345
        result_dict = {}
1346
        use_metric = list(self._metric_fn_list.keys())
1347
1348
1349
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1350
1351
1352
1353
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1354
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1355
            (loglikelihood,) = results
1356
1357
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1358
            return {
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1374
            }
1375
        elif self.OUTPUT_TYPE == "multiple_choice":
1376
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1377

1378
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1379
            choices = self.doc_to_choice(doc)
1380
1381
            completion_len = np.array([float(len(i)) for i in choices])

1382
1383
            if (
                2 * len(choices) == len(lls)
1384
                and "acc_mutual_info" in self._metric_fn_list.keys()
1385
1386
1387
1388
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1389
1390
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1391
1392
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1393

1394
1395
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1396

1397
1398
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1399
            else:
1400
                gold = self.doc_to_target(doc)
1401
1402

            gold_index_error = False
1403
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1404
1405
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1406
1407
                    gold_index_error = True
            else:
1408
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1409
                    gold = gold if gold < len(choices) else -100
1410
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1411
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1412

Lintang Sutawika's avatar
Lintang Sutawika committed
1413
                if gold == -100:
1414
1415
1416
1417
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1418
                    f"Label index was not in within range of available choices,"
1419
1420
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1421

1422
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1423
1424
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1425
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1426
1427
1428
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1429
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1430
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1431

Lintang Sutawika's avatar
Lintang Sutawika committed
1432
1433
1434
1435
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1436
            result_dict = {
1437
                **({"acc": acc} if "acc" in use_metric else {}),
1438
1439
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1440
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1441
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1442
1443
1444
1445
1446
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1447
1448
            }

1449
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1450
1451
1452
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1453
1454
1455
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1456
        elif self.OUTPUT_TYPE == "generate_until":
1457
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1458
            result = results[0]
1459
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1460
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1461
                # it assumes that doc_to_target returns a number.
1462
1463
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1464
1465
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1466
                gold = list(gold)
Chris's avatar
Chris committed
1467
1468
1469
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1470

lintangsutawika's avatar
lintangsutawika committed
1471
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1472
1473
1474
1475
1476
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1477
1478
1479
1480
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1481
1482
1483
1484
1485
1486
1487
1488
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1489
                    else:
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1511
                else:
1512
                    try:
1513
                        result_score = self._metric_fn_list[metric](
1514
1515
                            references=[gold],
                            predictions=[result],
1516
                            **self._metric_fn_kwargs[metric],
1517
                        )
1518
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1519
                        result_score = self._metric_fn_list[metric]([gold, result])
1520
1521
1522
1523
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1524
        else:
lintangsutawika's avatar
lintangsutawika committed
1525
1526
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1527
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1528
            )
1529
1530
1531

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1532
    def aggregation(self) -> dict:
1533
1534
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1535
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1536
        return self._higher_is_better
1537

Baber Abbasi's avatar
Baber Abbasi committed
1538
1539
1540
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1541
1542
1543
1544
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1545
1546
1547
1548
1549
1550
1551
1552
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1553
1554

class MultipleChoiceTask(Task):
1555
    OUTPUT_TYPE = "loglikelihood"
1556

baberabb's avatar
baberabb committed
1557
    def doc_to_target(self, doc: dict) -> str:
1558
1559
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1560
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1561
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1562
1563
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1564
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1565
                doc=doc,
1566
                arguments=(ctx, " {}".format(choice)),
1567
                idx=i,
1568
1569
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1570
1571
            for i, choice in enumerate(doc["choices"])
        ]
1572

1573
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1574
1575
1576
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1588
    def higher_is_better(self) -> dict:
1589
1590
1591
1592
1593
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1594
    def aggregation(self) -> dict:
1595
1596
1597
1598
1599
1600
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1601
class PerplexityTask(Task):
1602
1603
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1604
    def has_training_docs(self) -> bool:
1605
1606
        return False

baberabb's avatar
baberabb committed
1607
    def fewshot_examples(self, k: int, rnd) -> List:
1608
1609
1610
1611
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1612
1613
        return []

baberabb's avatar
baberabb committed
1614
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1615
1616
1617
1618
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1619
1620
1621

        return ""

baberabb's avatar
baberabb committed
1622
    def higher_is_better(self) -> dict:
1623
1624
1625
1626
1627
1628
1629
1630
1631
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1632
    def doc_to_text(self, doc) -> str:
1633
1634
1635
1636
1637
        return ""

    def doc_to_target(self, doc):
        return doc

1638
1639
1640
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1641

lintangsutawika's avatar
lintangsutawika committed
1642
1643
1644
1645
1646
1647
1648
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1649

1650
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1651
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1652
1653
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1654
1655
1656
1657
1658
1659
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1660
    def aggregation(self) -> dict:
1661
1662
1663
1664
1665
1666
1667
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1668
    def count_bytes(cls, doc) -> int:
1669
1670
1671
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1672
    def count_words(cls, doc) -> int:
1673
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1674
        return len(re.split(r"\s+", doc))