task.py 64.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
    group: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
71
72
    fewshot_split: Optional[str] = (
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
78
79
80
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
81
    description: str = ""
82
83
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
84
    fewshot_config: Optional[dict] = None
85
    # runtime configuration options
86
    num_fewshot: Optional[int] = None
87
    # scoring options
88
89
90
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
91
    repeats: int = 1
92
    filter_list: Optional[Union[str, list]] = None
93
    should_decontaminate: bool = False
94
    doc_to_decontamination_query: Optional[str] = None
95
96
97
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
100
101
102
103
104
105
106
107
108
109
110
111
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
112
        if self.generation_kwargs is not None:
113
            if self.output_type != "generate_until":
114
                eval_logger.warning(
115
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
118
119
120
121
122
123
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
124
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
125
        else:
126
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
127
128
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
129
130
131
132
133
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
                    "do_sample": False,
                }
136

137
138
139
    def __getitem__(self, item):
        return getattr(self, item)

140
141
142
    def __setitem__(self, item, value):
        return setattr(self, item, value)

143
    def to_dict(self, keep_callable: bool = False) -> dict:
144
145
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
146
        Used for dumping results alongside full task configuration
147

haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
151
152
153
154
155
156
157
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
158
159
160
161
162
163
164
165
166
167
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
168
        return cfg_dict
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

186
187
188
189
190
191
192
193
194
195
196

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

197
    VERSION: Optional[Union[int, str]] = None
198

199
200
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
201
    DATASET_PATH: Optional[str] = None
202
203

    # The name of a subset within `DATASET_PATH`.
204
    DATASET_NAME: Optional[str] = None
205

206
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
207

208
209
    def __init__(
        self,
210
211
212
213
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
214
    ) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
237
238
239
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
240

241
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
242

lintangsutawika's avatar
lintangsutawika committed
243
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
244
245
246
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
247

248
249
250
251
252
253
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
278
279
280
281
282
283
284
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
285

286
    @property
287
    def config(self) -> TaskConfig:
288
289
290
        """Returns the TaskConfig associated with this class."""
        return self._config

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

306
    def training_docs(self) -> Iterable:
307
308
309
310
311
312
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
    def validation_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def test_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def fewshot_docs(self) -> Iterable:
328
329
330
331
332
333
334
335
336
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
337
            eval_logger.warning(
338
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
339
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
340
            )
341
342
            return self.test_docs()

343
    def _process_doc(self, doc: dict) -> dict:
344
345
346
347
348
349
350
351
352
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
353

354
    @property
355
    def instances(self) -> List[Instance]:
356
357
358
359
360
361
362
363
364
365
366
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

367
368
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
369
370
371
372
373
374
375
376
377
378
379
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

380
381
    def build_all_requests(
        self,
382
        *,
383
384
385
386
387
388
389
390
391
392
        limit: Union[int, None] = None,
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
393
    ) -> None:
394
        """Build a set of Instances for a task, and store them in task.instances"""
395
396
397
398

        # used with caching
        og_limit = limit

399
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
400
401
402
403
404
405
406
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
407
        cache_key += f"-tokenizer{tokenizer_name}"
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
423
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
424

425
        instances = []
426
427
428
429
430
431
432
433
434
435

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
436
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
437
438
439
440
441
442
443
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
444
        ):
445
            # sample fewshot context #TODO: need to offset doc_id by rank now!
446
            fewshot_ctx = self.fewshot_context(
447
                doc,
448
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
449
450
451
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
452
                chat_template,
453
            )
454

455
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
456
457
458
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
459
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
460
            )
461
462
463
464

            if not isinstance(inst, list):
                inst = [inst]

465
466
467
468
469
470
471
472
473
474
475
476
477
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
478

479
480
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
481

482
483
484
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
501
            The number of times each instance in a dataset is inferred on. Defaults to 1,
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

537
538
539
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
542
543
544
545
546
547
548
549
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

550
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
551
    def fewshot_context(
552
553
554
        self,
        doc,
        num_fewshot,
555
        rnd=None,
556
        description=None,
lintangsutawika's avatar
lintangsutawika committed
557
    ):
558
559
560
561
562
563
564
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
565
566
567
568
569
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
570
571
572
        :returns: str
            The fewshot context.
        """
573
        if rnd is None:
574
575
576
577
578
579
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
580

581
        description = description if description else ""
582
583

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
584
            labeled_examples = ""
585
        else:
lintangsutawika's avatar
lintangsutawika committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
610
            )
611
612

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
613
        return description + labeled_examples + example
614

615
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
616
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
617
618
        if hasattr(self, "_filters"):
            for f in self._filters:
619
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
620
621
622
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
623

baberabb's avatar
baberabb committed
624
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
625
        """Returns the config as a dictionary."""
626
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
627
        # (num_fewshot)
628
        return self.config.to_dict()
629

Baber Abbasi's avatar
Baber Abbasi committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

670
671
672
673
674
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

675
676
677
678
679
680
681
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
682
683
684
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
685
686
687
688
689
690
691
692
693
694
695
696
697

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

698
699

class ConfigurableTask(Task):
700
    VERSION = "Yaml"
701
    OUTPUT_TYPE = None
702
    CONFIG = None
703
704

    def __init__(
705
706
707
708
709
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
710
    ) -> None:  # TODO no super() call here
711
        # Get pre-configured attributes
712
        self._config = self.CONFIG
713

714
        # Use new configurations if there was no preconfiguration
715
        if self.config is None:
716
            self._config = TaskConfig(**config)
717
718
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
719
            if config is not None:
720
                self._config.__dict__.update(config)
721

722
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
723
724
725
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
726

727
728
729
730
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

731
        if self.config.output_type is not None:
732
733
734
735
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
736
            self.OUTPUT_TYPE = self.config.output_type
737

738
739
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
740

741
742
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
743

744
745
746
747
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
748

749
        if self.config.metric_list is None:
750
            # TODO: handle this in TaskConfig.__post_init__ ?
751
752
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

753
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
754
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
755
                self._metric_fn_kwargs[metric_name] = {}
756
757
758
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
759
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
760
        else:
761
            for metric_config in self.config.metric_list:
762
763
764
765
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
766
767
768
769
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
770
771
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
772
                }
Chris's avatar
Chris committed
773
774
775
776
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
777

778
                if self.config.process_results is not None:
779
780
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
781
782
783
784
785
786
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
787
788
789
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
790
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
791

792
                if "aggregation" in metric_config:
793
                    agg_name = metric_config["aggregation"]
794
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
795
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
796
                    elif callable(agg_name):  # noqa: E721
797
798
799
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
800
                else:
801
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
802
                    metric_agg = get_metric_aggregation(metric_name)
803
                    eval_logger.warning(
804
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
805
806
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
807
                    )
808
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
809

810
811
812
813
814
815
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
816
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
817
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
818
                        f"higher_is_better={is_higher_better(metric_name)}"
819
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
820
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
821

822
        self.download(self.config.dataset_kwargs)
823
824
825
        self._training_docs = None
        self._fewshot_docs = None

826
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
827
            self._filters = []
828
            for filter_config in self.config.filter_list:
829
830
831
832
833
834
835
836
837
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
838
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
839
        else:
840
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
841

842
843
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
844
            self.prompt = get_prompt(
845
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
846
            )
847
848
849
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
850
        if self.fewshot_docs() is not None:
851
852
853
854
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
855
856
857
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
874

875
        self.task_docs = self.eval_docs
876

877
        # Test One Doc
878
        self.features = list(self.task_docs.features.keys())
879
880
        self.multiple_input = 0
        self.multiple_target = 0
881
        test_doc = self.task_docs[0]
882
        test_text = self.doc_to_text(test_doc)
883
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
884

885
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
886
            test_choice = self.doc_to_choice(test_doc)
887
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
888
                eval_logger.error("doc_to_choice must return list")
889
890
            else:
                num_choice = len(test_choice)
891

892
            if isinstance(test_text, int):
893
                self.multiple_input = num_choice
894
895
        else:
            test_choice = None
896

897
        if isinstance(test_target, list):
898
            self.multiple_target = len(test_target)
899
        else:
900
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
901
                test_target = test_choice[test_target]
902
            else:
lintangsutawika's avatar
lintangsutawika committed
903
                test_target = str(test_target)
904

905
906
907
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
908
            check_choices = [test_target]
909
910
911
912
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
913
914
                    True
                    if self.config.target_delimiter.rstrip()
915
                    != self.config.target_delimiter
916
                    else False
917
                )
918

919
                if delimiter_has_whitespace and choice_has_whitespace:
920
921
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
922
923
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
924
                    eval_logger.debug(
925
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
926
927
                    )

928
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
929
930
931
932
933
934
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
935
    def has_training_docs(self) -> bool:
936
        if self.config.training_split is not None:
937
938
939
940
            return True
        else:
            return False

baberabb's avatar
baberabb committed
941
    def has_validation_docs(self) -> bool:
942
        if self.config.validation_split is not None:
943
944
945
946
            return True
        else:
            return False

baberabb's avatar
baberabb committed
947
    def has_test_docs(self) -> bool:
948
        if self.config.test_split is not None:
949
950
951
952
            return True
        else:
            return False

baberabb's avatar
baberabb committed
953
    def training_docs(self) -> datasets.Dataset:
954
        if self.has_training_docs():
955
956
957
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
958
                )
959
            return self.dataset[self.config.training_split]
960

baberabb's avatar
baberabb committed
961
    def validation_docs(self) -> datasets.Dataset:
962
        if self.has_validation_docs():
963
964
965
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
966
                )
967
            return self.dataset[self.config.validation_split]
968

baberabb's avatar
baberabb committed
969
    def test_docs(self) -> datasets.Dataset:
970
        if self.has_test_docs():
971
972
973
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
974

975
    def fewshot_docs(self):
976
        if self.config.fewshot_split is not None:
977
978
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
979
            return self.dataset[self.config.fewshot_split]
980
981
982
983
984
985
986
987
988
989
990
991
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
992
        else:
993
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
994
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
995
                    f"[Task: {self.config.task}] "
996
997
998
999
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1000

KonradSzafer's avatar
KonradSzafer committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1022
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1023
1024
1025
1026
1027
1028
1029
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1030
        chat_template: Optional[Callable] = None,
KonradSzafer's avatar
KonradSzafer committed
1031
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1032
1033
1034
1035
1036
1037
1038
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1039
1040
1041
1042
1043
1044
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1045
1046
        :param chat_template: Callable
            Chat template to be applied to the fewshot context.
lintangsutawika's avatar
lintangsutawika committed
1047
1048
1049
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1050
1051
1052
1053
1054
1055
1056

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1057
1058
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1059

KonradSzafer's avatar
KonradSzafer committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1069
        else:
KonradSzafer's avatar
KonradSzafer committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1089
1090

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1091
1092
        if apply_chat_template:
            if self.multiple_input:
1093
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
1105
                    labeled_examples_list.append(chat_template(chat))
KonradSzafer's avatar
KonradSzafer committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
1119
            return chat_template(labeled_examples)
1120
        else:
KonradSzafer's avatar
KonradSzafer committed
1121
1122
            if self.multiple_input:
                return labeled_examples
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1133

1134
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1135
        """Iterates over FilterEnsembles and applies them to instances"""
1136
1137
        if hasattr(self, "_filters"):
            for f in self._filters:
1138
                f.apply(self._instances)
1139
1140
1141
1142
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1143
    def should_decontaminate(self):
1144
        return self.config.should_decontaminate
1145
1146

    def doc_to_decontamination_query(self, doc):
1147
        if self.config.should_decontaminate:
1148
1149
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1150
            else:
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1162

1163
    def _process_doc(self, doc: dict) -> dict:
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1175
1176
        if self.prompt is not None:
            doc_to_text = self.prompt
1177
        else:
1178
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1179

1180
        if isinstance(doc_to_text, int):
1181
            return doc_to_text
1182
        elif isinstance(doc_to_text, str):
1183
            if doc_to_text in self.features:
1184
                # if self.config.doc_to_choice is not None:
1185
1186
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1187
1188
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1189
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1190
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1191
1192
1193
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1194
        elif callable(doc_to_text):
1195
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1196
        # Used when applying a Promptsource template
1197
        elif hasattr(doc_to_text, "apply"):
1198
1199
1200
1201
1202
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1203
                return self.config.fewshot_delimiter
1204
        else:
1205
            print(type(doc_to_text))
1206
            raise TypeError
1207

1208
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1209
1210
        if self.prompt is not None:
            doc_to_target = self.prompt
1211
        else:
1212
            doc_to_target = self.config.doc_to_target
1213

1214
        if isinstance(doc_to_target, int):
1215
            return doc_to_target
1216
        elif isinstance(doc_to_target, str):
1217
            if doc_to_target in self.features:
1218
                # if self.config.doc_to_choice is not None:
1219
1220
1221
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1222
            else:
lintangsutawika's avatar
lintangsutawika committed
1223
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1224
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1225
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1226
1227
1228
1229
1230
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1231
1232
1233
1234
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1235
1236
                else:
                    return target_string
1237
        elif isinstance(doc_to_target, list):
1238
            return doc_to_target
1239
        elif callable(doc_to_target):
1240
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1241
        # Used when applying a Promptsource template
1242
        elif hasattr(doc_to_target, "apply"):
1243
            applied_prompt = doc_to_target.apply(doc)
1244
1245
1246
1247
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1248
                return self.config.fewshot_delimiter
1249
1250
        else:
            raise TypeError
1251

baberabb's avatar
baberabb committed
1252
    def doc_to_choice(self, doc: Any) -> List[str]:
1253
1254
        if self.prompt is not None:
            doc_to_choice = self.prompt
1255
        elif self.config.doc_to_choice is None:
1256
1257
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1258
            doc_to_choice = self.config.doc_to_choice
1259

1260
        if isinstance(doc_to_choice, str):
1261
1262
1263
1264
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1265
        elif isinstance(doc_to_choice, list):
1266
            return doc_to_choice
1267
        elif isinstance(doc_to_choice, dict):
1268
1269
1270
1271
1272
1273
1274
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1275

baberabb's avatar
baberabb committed
1276
1277
1278
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1279
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1280
            arguments = (ctx, self.doc_to_target(doc))
1281
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1282
            arguments = (self.doc_to_target(doc),)
1283
        elif self.OUTPUT_TYPE == "multiple_choice":
1284
            choices = self.doc_to_choice(doc)
1285
            target_delimiter = self.config.target_delimiter
1286
1287
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1288
                cont = self.doc_to_target(doc)
1289
1290
1291
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1292
            else:
1293
                # Otherwise they are placed in the continuation
1294
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1295

1296
            request_list = [
1297
1298
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1299
                    doc=doc,
1300
                    arguments=arg,
1301
                    idx=i,
1302
1303
                    **kwargs,
                )
1304
                for i, arg in enumerate(arguments)
1305
            ]
1306
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1307
            if "acc_mutual_info" in self._metric_fn_list.keys():
1308
1309
1310
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1311
                # here mutual info refers to calculating
1312
1313
1314
1315
1316
1317
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1318
                            doc=doc,
1319
                            arguments=("", "{}".format(choice)),
1320
1321
1322
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1323
                        for i, choice in enumerate(choices)
1324
1325
1326
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1327

1328
        elif self.OUTPUT_TYPE == "generate_until":
1329
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1330
1331

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1332
1333
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1334
1335

    def process_results(self, doc, results):
1336
1337
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1338

1339
        result_dict = {}
1340
        use_metric = list(self._metric_fn_list.keys())
1341
1342
1343
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1344
1345
1346
1347
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1348
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1349
            (loglikelihood,) = results
1350
1351
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1352
            return {
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1368
            }
1369
        elif self.OUTPUT_TYPE == "multiple_choice":
1370
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1371

1372
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1373
            choices = self.doc_to_choice(doc)
1374
1375
            completion_len = np.array([float(len(i)) for i in choices])

1376
1377
            if (
                2 * len(choices) == len(lls)
1378
                and "acc_mutual_info" in self._metric_fn_list.keys()
1379
1380
1381
1382
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1383
1384
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1385
1386
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1387

1388
1389
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1390

1391
1392
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1393
            else:
1394
                gold = self.doc_to_target(doc)
1395
1396

            gold_index_error = False
1397
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1398
1399
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1400
1401
                    gold_index_error = True
            else:
1402
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1403
                    gold = gold if gold < len(choices) else -100
1404
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1405
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1406

Lintang Sutawika's avatar
Lintang Sutawika committed
1407
                if gold == -100:
1408
1409
1410
1411
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1412
                    f"Label index was not in within range of available choices,"
1413
1414
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1415

1416
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1417
1418
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1419
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1420
1421
1422
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1423
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1424
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1425

Lintang Sutawika's avatar
Lintang Sutawika committed
1426
1427
1428
1429
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1430
            result_dict = {
1431
                **({"acc": acc} if "acc" in use_metric else {}),
1432
1433
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1434
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1435
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1436
1437
1438
1439
1440
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1441
1442
            }

1443
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1444
1445
1446
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1447
1448
1449
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1450
        elif self.OUTPUT_TYPE == "generate_until":
1451
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1452
            result = results[0]
1453
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1454
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1455
                # it assumes that doc_to_target returns a number.
1456
1457
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1458
1459
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1460
                gold = list(gold)
Chris's avatar
Chris committed
1461
1462
1463
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1464

lintangsutawika's avatar
lintangsutawika committed
1465
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1466
1467
1468
1469
1470
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1471
1472
1473
1474
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1475
1476
1477
1478
1479
1480
1481
1482
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1483
                    else:
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1505
                else:
1506
                    try:
1507
                        result_score = self._metric_fn_list[metric](
1508
1509
                            references=[gold],
                            predictions=[result],
1510
                            **self._metric_fn_kwargs[metric],
1511
                        )
1512
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1513
                        result_score = self._metric_fn_list[metric]([gold, result])
1514
1515
1516
1517
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1518
        else:
lintangsutawika's avatar
lintangsutawika committed
1519
1520
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1521
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1522
            )
1523
1524
1525

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1526
    def aggregation(self) -> dict:
1527
1528
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1529
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1530
        return self._higher_is_better
1531

Baber Abbasi's avatar
Baber Abbasi committed
1532
1533
1534
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1535
1536
1537
1538
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1539
1540
1541
1542
1543
1544
1545
1546
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1547
1548

class MultipleChoiceTask(Task):
1549
    OUTPUT_TYPE = "loglikelihood"
1550

baberabb's avatar
baberabb committed
1551
    def doc_to_target(self, doc: dict) -> str:
1552
1553
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1554
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1555
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1556
1557
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1558
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1559
                doc=doc,
1560
                arguments=(ctx, " {}".format(choice)),
1561
                idx=i,
1562
1563
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1564
1565
            for i, choice in enumerate(doc["choices"])
        ]
1566

1567
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1568
1569
1570
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1582
    def higher_is_better(self) -> dict:
1583
1584
1585
1586
1587
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1588
    def aggregation(self) -> dict:
1589
1590
1591
1592
1593
1594
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1595
class PerplexityTask(Task):
1596
1597
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1598
    def has_training_docs(self) -> bool:
1599
1600
        return False

baberabb's avatar
baberabb committed
1601
    def fewshot_examples(self, k: int, rnd) -> List:
1602
1603
1604
1605
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1606
1607
        return []

baberabb's avatar
baberabb committed
1608
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1609
1610
1611
1612
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1613
1614
1615

        return ""

baberabb's avatar
baberabb committed
1616
    def higher_is_better(self) -> dict:
1617
1618
1619
1620
1621
1622
1623
1624
1625
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1626
    def doc_to_text(self, doc) -> str:
1627
1628
1629
1630
1631
        return ""

    def doc_to_target(self, doc):
        return doc

1632
1633
1634
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1635

lintangsutawika's avatar
lintangsutawika committed
1636
1637
1638
1639
1640
1641
1642
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1643

1644
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1645
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1646
1647
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1648
1649
1650
1651
1652
1653
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1654
    def aggregation(self) -> dict:
1655
1656
1657
1658
1659
1660
1661
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1662
    def count_bytes(cls, doc) -> int:
1663
1664
1665
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1666
    def count_words(cls, doc) -> int:
1667
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1668
        return len(re.split(r"\s+", doc))