test_modeling_common.py 184 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
import collections
16
import copy
17
import gc
18
import inspect
19
import os
20
import os.path
21
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
23
import re
24
import tempfile
25
import warnings
26
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
27
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
28

29
import numpy as np
30
from parameterized import parameterized
31
from pytest import mark
32
33

import transformers
34
35
from transformers import (
    AutoModel,
36
    AutoModelForCausalLM,
37
38
    AutoModelForSequenceClassification,
    PretrainedConfig,
39
    PreTrainedModel,
40
41
    is_torch_available,
    logging,
42
    set_seed,
43
)
44
from transformers.models.auto import get_values
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
from transformers.testing_utils import (
    CaptureLogger,
67
    is_flaky,
68
69
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
70
    require_accelerate,
71
    require_bitsandbytes,
72
    require_flash_attn,
73
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
    require_torch,
75
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
76
    require_torch_multi_gpu,
77
    require_torch_sdpa,
Sylvain Gugger's avatar
Sylvain Gugger committed
78
79
80
    slow,
    torch_device,
)
81
from transformers.utils import (
82
83
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
84
    SAFE_WEIGHTS_NAME,
85
    is_accelerate_available,
86
87
    is_flax_available,
    is_tf_available,
fxmarty's avatar
fxmarty committed
88
89
    is_torch_bf16_available_on_device,
    is_torch_fp16_available_on_device,
90
    is_torch_fx_available,
91
    is_torch_sdpa_available,
92
)
93
from transformers.utils.generic import ContextManagers, ModelOutput
94

Aymeric Augustin's avatar
Aymeric Augustin committed
95

96
97
98
99
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


100
if is_torch_available():
101
    import torch
102
    from safetensors.torch import load_file as safe_load_file
103
    from safetensors.torch import save_file as safe_save_file
104
    from torch import nn
thomwolf's avatar
thomwolf committed
105

106
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
107
    from transformers.modeling_utils import load_state_dict, no_init_weights
Sylvain Gugger's avatar
Sylvain Gugger committed
108
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
109

Sylvain Gugger's avatar
Sylvain Gugger committed
110

111
112
113
if is_tf_available():
    import tensorflow as tf

114
115
if is_flax_available():
    import jax.numpy as jnp
116

117
    from tests.test_modeling_flax_utils import check_models_equal
118
119
120
121
122
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

123
if is_torch_fx_available():
124
    from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
125

126

127
128
129
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
130
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
131
            setattr(configs_no_init, key, 1e-10)
132
133
134
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
135
136
    return configs_no_init

thomwolf's avatar
thomwolf committed
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


163
164
165
166
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
167
    all_generative_model_classes = ()
168
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
172
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
173
    test_head_masking = True
174
    test_mismatched_shapes = True
175
    test_missing_keys = True
176
    test_model_parallel = False
177
    is_encoder_decoder = False
178
    has_attentions = True
179
    model_split_percents = [0.5, 0.7, 0.9]
180

181
182
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
183
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
184
            inputs_dict = {
185
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
186
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
187
                else v
188
189
                for k, v in inputs_dict.items()
            }
190
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
191
            inputs_dict.pop("attention_mask")
192
193

        if return_labels:
194
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
195
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
196
197
198
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
199
            ]:
200
201
202
203
204
205
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
206
207
208
209
210
211
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
212
            ]:
213
214
215
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
216
217
218
219
220
221
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
222
223
224
225
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
226
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
227
228
229
230
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
231
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
232
233
234
235
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
236

237
238
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
239
    def test_save_load(self):
240
241
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

242
243
244
245
246
247
248
249
250
251
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

252
253
254
255
256
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
257
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
258

259
            with tempfile.TemporaryDirectory() as tmpdirname:
260
                model.save_pretrained(tmpdirname)
261
262
263
264
265
266
267

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

268
                model = model_class.from_pretrained(tmpdirname)
269
                model.to(torch_device)
270
                with torch.no_grad():
271
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
272

273
274
275
276
277
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
278

279
280
281
282
283
284
285
286
287
288
289
290
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    def test_keep_in_fp32_modules(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            if model_class._keep_in_fp32_modules is None:
                return

            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)

                for name, param in model.named_parameters():
                    if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
                        self.assertTrue(param.dtype == torch.float32)
                    else:
                        self.assertTrue(param.dtype == torch.float16, name)

309
    def test_save_load_keys_to_ignore_on_save(self):
310
311
312
313
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
314
315
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
316
317
318
                continue

            # check the keys are in the original state_dict
319
            for k in _keys_to_ignore_on_save:
320
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
321
322
323
324

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
325
326
327
                output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
                state_dict_saved = safe_load_file(output_model_file)

328
                for k in _keys_to_ignore_on_save:
329
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
330

Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
333
334
335
336
337
338
                keys_to_ignore = set(model._keys_to_ignore_on_save)

                if hasattr(model, "_tied_weights_keys"):
                    keys_to_ignore.update(set(model._tied_weights_keys))

                self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
                self.assertTrue(len(load_result.unexpected_keys) == 0)

341
342
343
344
345
346
347
348
349
350
351
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

367
368
369
370
371
372
373
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to True
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertTrue(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
                    )

374
375
376
377
            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

378
379
380
381
382
383
384
            # Loop over all modules and check that relevant modules have gradient_checkpointing set to False
            for n, m in model.named_modules():
                if hasattr(m, "gradient_checkpointing"):
                    self.assertFalse(
                        m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
                    )

385
    @is_flaky(description="low likelihood of failure, reason not yet discovered")
386
387
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
388
389
        if config.__class__ not in MODEL_MAPPING:
            return
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
411
412
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
429
                # Before we test anything
430
431

                for key in model_fast_init.state_dict().keys():
432
433
434
435
436
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_save_load_low_cpu_mem_usage(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            for model_class in self.all_model_classes:
                config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
                model_to_save = model_class(config)

                model_to_save.save_pretrained(tmpdirname)

                model = model_class.from_pretrained(
                    tmpdirname,
                    low_cpu_mem_usage=True,
                )

                # The low_cpu_mem_usage=True causes the model params to be initialized with device=meta. If there are
                # any unloaded or untied parameters, then trying to move it to device=torch_device will throw an error.
                model.to(torch_device)

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def test_fast_init_context_manager(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, 10, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data.normal_(mean=0.0, std=self.std)

        # 2. Make sure a linear layer's reset params is properly skipped:
        with ContextManagers([no_init_weights(True)]):
            no_init_instance = MyClass()

        set_seed(0)
        expected_bias = torch.tensor(
            ([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475])
        )
        init_instance = MyClass()
        torch.testing.assert_allclose(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4)

        set_seed(0)
        torch.testing.assert_allclose(
            init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5))
        )

        # 3. Make sure weights that are not present use init_weight_ and get expected values
        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = init_instance.state_dict()
            del state_dict["linear.weight"]

            init_instance.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
            set_seed(0)
            model_fast_init = MyClass.from_pretrained(tmpdirname)

            set_seed(0)
            model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False)

            for key in model_fast_init.state_dict().keys():
                max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]))
                self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical")

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    def test_fast_init_tied_embeddings(self):
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig
            _tied_weights_keys = ["output_embeddings.weight"]

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.input_embeddings = nn.Embedding(10, 10)
                self.output_embeddings = nn.Linear(10, 10, bias=False)
                self.tie_weights()

            def get_output_embeddings(self):
                return self.output_embeddings

            def set_output_embeddings(self, output_embeddings):
                self.output_embeddings = output_embeddings

            def get_input_embeddings(self):
                return self.input_embeddings

            def set_input_embeddings(self, input_embeddings):
                self.input_embeddings = input_embeddings

            def _init_weights(self, module):
                if module is self.output_embeddings:
                    raise ValueError("unnecessarily initialized tied output embedding!")

        model = MyClass()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            # throws if it initializes the tied output_embeddings
            MyClass.from_pretrained(tmpdirname)

539
540
    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
541
542
        if config.__class__ not in MODEL_MAPPING:
            return
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
564
565
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
584
585
586
587
588
589
590
591
592
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def test_torch_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if config.__class__ not in MODEL_MAPPING:
            return
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            def check_equal(loaded):
                for key in state_dict.keys():
                    max_diff = torch.max(
                        state_dict()[key] ^ loaded[key]
                        if isinstance(state_dict[key], torch.BoolTensor)
                        else torch.abs(state_dict[key] - loaded[key])
                    ).item()
                    self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
                check_equal(load_state_dict(pt_checkpoint_path))
                torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
                check_equal(load_state_dict(pt_checkpoint_path))

Patrick von Platen's avatar
Patrick von Platen committed
642
    def test_initialization(self):
643
644
645
646
647
648
649
650
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
651
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
652
                        [0.0, 1.0],
653
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
654
                    )
thomwolf's avatar
thomwolf committed
655

Patrick von Platen's avatar
Patrick von Platen committed
656
    def test_determinism(self):
657
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
658
659
660
661
662
663
664
665
666

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

667
668
669
670
671
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
672
673
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
674

675
676
677
678
679
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
697
                expected_arg_names.extend(
698
699
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
700
701
702
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
703
704
705
706
707
708
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
            elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
                expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
                self.assertListEqual(arg_names, expected_arg_names)
709
            else:
710
                expected_arg_names = [model.main_input_name]
711
712
                self.assertListEqual(arg_names[:1], expected_arg_names)

713
    def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
714
715
716
717
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
718
719
720
721
722
            if (
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
                or not model_class.supports_gradient_checkpointing
            ):
723
                continue
724

725
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
726
727
            config.use_cache = False
            config.return_dict = True
728
            model = model_class(config)
729

730
            model.to(torch_device)
731
            model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
732
            model.train()
733
734
735
736
737
738
739

            # unfreeze additional layers
            for p in model.parameters():
                p.requires_grad_(True)

            optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

740
741
742
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()
743
            optimizer.step()
744

745
746
747
748
749
            for k, v in model.named_parameters():
                if v.requires_grad:
                    self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")

    def test_training(self):
750
        if not self.model_tester.is_training:
751
752
753
            return

        for model_class in self.all_model_classes:
754
755
756
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

757
758
759
760
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
            ]:
761
                continue
762

763
764
765
766
767
768
769
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

770
771
772
773
774
775
776
777
778
779
780
781
782
    def test_training_gradient_checkpointing(self):
        # Scenario - 1 default behaviour
        self.check_training_gradient_checkpointing()

    def test_training_gradient_checkpointing_use_reentrant(self):
        # Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
        # torch.utils.checkpoint.checkpoint
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})

    def test_training_gradient_checkpointing_use_reentrant_false(self):
        # Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
        # future releases: https://pytorch.org/docs/stable/checkpoint.html
        self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
783

Patrick von Platen's avatar
Patrick von Platen committed
784
    def test_attention_outputs(self):
785
786
787
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

788
789
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
790

791
792
793
794
795
796
797
798
799
800
801
802
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
803
            config.return_dict = True
804
805
806
807
808
809
810
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
811

812
813
814
815
816
817
818
819
820
821
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
822

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
842
843
844
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
845
                ]:
846
847
848
849
850
851
852
853
854
855
856
857
858
859
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
904

905
    @slow
906
    def test_torchscript_simple(self):
907
908
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
909

910
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
911
    def test_torchscript_output_attentions(self):
912
913
914
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
915

916
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
917
    def test_torchscript_output_hidden_state(self):
918
919
920
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
921

922
923
924
925
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
926
927
928
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
929

930
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
931
        if not self.test_torchscript:
932
            return
933

934
935
936
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
937
            for attn_implementation in ["eager", "sdpa"]:
938
                if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
939
                    continue
940

941
942
943
944
945
                configs_no_init._attn_implementation = attn_implementation
                model = model_class(config=configs_no_init)
                model.to(torch_device)
                model.eval()
                inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
946

947
                main_input_name = model_class.main_input_name
thomwolf's avatar
thomwolf committed
948

949
                try:
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
                    if model.config.is_encoder_decoder:
                        model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                        main_input = inputs[main_input_name]
                        attention_mask = inputs["attention_mask"]
                        decoder_input_ids = inputs["decoder_input_ids"]
                        decoder_attention_mask = inputs["decoder_attention_mask"]
                        model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        traced_model = torch.jit.trace(
                            model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
                        )
                    elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        image = inputs["image"].tensor
                        model(input_ids, bbox, image)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox, image), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                        input_ids = inputs["input_ids"]
                        bbox = inputs["bbox"]
                        model(input_ids, bbox)
                        traced_model = torch.jit.trace(
                            model, (input_ids, bbox), check_trace=False
                        )  # when traced model is checked, an error is produced due to name mangling
                    else:
                        main_input = inputs[main_input_name]

                        if model.config._attn_implementation == "sdpa":
                            trace_input = {main_input_name: main_input}

                            if "attention_mask" in inputs:
                                trace_input["attention_mask"] = inputs["attention_mask"]
                            else:
                                self.skipTest("testing SDPA without attention_mask is not supported")

                            model(main_input, attention_mask=inputs["attention_mask"])
                            # example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
                            traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
                        else:
                            model(main_input)
                            traced_model = torch.jit.trace(model, (main_input,))
                except RuntimeError:
                    self.fail("Couldn't trace module.")

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                    try:
                        torch.jit.save(traced_model, pt_file_name)
                    except Exception:
                        self.fail("Couldn't save module.")

                    try:
                        loaded_model = torch.jit.load(pt_file_name)
                    except Exception:
                        self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
1007

1008
1009
                model.to(torch_device)
                model.eval()
thomwolf's avatar
thomwolf committed
1010

1011
1012
                loaded_model.to(torch_device)
                loaded_model.eval()
thomwolf's avatar
thomwolf committed
1013

1014
1015
                model_state_dict = model.state_dict()
                loaded_model_state_dict = loaded_model.state_dict()
1016

1017
1018
1019
1020
                non_persistent_buffers = {}
                for key in loaded_model_state_dict.keys():
                    if key not in model_state_dict.keys():
                        non_persistent_buffers[key] = loaded_model_state_dict[key]
1021

1022
1023
1024
                loaded_model_state_dict = {
                    key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
                }
1025

1026
                self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
1027

1028
1029
1030
1031
1032
1033
1034
                model_buffers = list(model.buffers())
                for non_persistent_buffer in non_persistent_buffers.values():
                    found_buffer = False
                    for i, model_buffer in enumerate(model_buffers):
                        if torch.equal(non_persistent_buffer, model_buffer):
                            found_buffer = True
                            break
1035

1036
1037
                    self.assertTrue(found_buffer)
                    model_buffers.pop(i)
1038

1039
1040
1041
1042
1043
1044
                models_equal = True
                for layer_name, p1 in model_state_dict.items():
                    if layer_name in loaded_model_state_dict:
                        p2 = loaded_model_state_dict[layer_name]
                        if p1.data.ne(p2.data).sum() > 0:
                            models_equal = False
thomwolf's avatar
thomwolf committed
1045

1046
                self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
1047

1048
1049
1050
                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1051

1052
1053
1054
1055
1056
1057
1058
1059
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

1060
1061
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
1062
1063
1064
            self.skipTest(
                f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
            )
1065
1066
1067
1068

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

1069
        for model_class in self.all_model_classes:
1070
1071
1072
1073
1074
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

1075
1076
            # We may want to test several inputs (various shapes, etc.).
            inputs_to_test = [inputs]
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
            if model.config.is_encoder_decoder:
                model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                labels = inputs.get("labels", None)
                input_names = [
                    "attention_mask",
                    "decoder_attention_mask",
                    "decoder_input_ids",
                    "input_features",
                    "input_ids",
                    "input_values",
                ]
                if labels is not None:
                    input_names.append("labels")
            else:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
                    input_names.append("past_key_values")

                    # Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
                    if "past_key_values" not in inputs:
                        batch_size = inputs[next(iter(inputs))].shape[0]
                        num_heads = model.config.num_attention_heads
                        head_dim = model.config.hidden_size // model.config.num_attention_heads

                        cache_shape = (batch_size, num_heads, 0, head_dim)
                        empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
1128
                            )
1129
1130
                            for i in range(model.config.num_hidden_layers)
                        )
1131

1132
1133
1134
1135
1136
1137
1138
1139
1140
                        cache_length = 9
                        cache_shape = (batch_size, num_heads, cache_length, head_dim)
                        non_empty_pkv = tuple(
                            (
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                                torch.rand(cache_shape, dtype=torch.float, device=torch_device),
                            )
                            for i in range(model.config.num_hidden_layers)
                        )
1141

1142
                        inps = copy.deepcopy(inputs_to_test[0])
1143

1144
                        inputs_to_test[0]["past_key_values"] = empty_pkv
1145

1146
1147
                        inps["past_key_values"] = non_empty_pkv
                        inputs_to_test.append(inps)
1148

1149
1150
1151
1152
                        past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
                        inputs_to_test[1]["attention_mask"] = torch.cat(
                            (past_mask, inputs_to_test[1]["attention_mask"]), dim=1
                        )
1153

1154
1155
1156
            for inps in inputs_to_test:
                filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
                input_names = list(filtered_inputs.keys())
1157

1158
1159
1160
1161
                if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                    not hasattr(model.config, "problem_type") or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"
1162

1163
                traced_model = symbolic_trace(model, input_names)
1164

1165
1166
1167
                with torch.no_grad():
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
                def flatten_output(output):
                    flatten = []
                    for x in output:
                        if isinstance(x, (tuple, list)):
                            flatten += flatten_output(x)
                        elif not isinstance(x, torch.Tensor):
                            continue
                        else:
                            flatten.append(x)
                    return flatten
1179

1180
1181
1182
                model_output = flatten_output(model_output)
                traced_output = flatten_output(traced_output)
                num_outputs = len(model_output)
1183
1184
1185

                for i in range(num_outputs):
                    self.assertTrue(
1186
1187
                        torch.allclose(model_output[i], traced_output[i]),
                        f"traced {i}th output doesn't match model {i}th output for {model_class}",
1188
1189
                    )

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
                # Test that the model can be serialized and restored properly
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                    try:
                        with open(pkl_file_name, "wb") as f:
                            pickle.dump(traced_model, f)
                        with open(pkl_file_name, "rb") as f:
                            loaded = pickle.load(f)
                    except Exception as e:
                        self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                    loaded_output = loaded(**filtered_inputs)
                    loaded_output = flatten_output(loaded_output)

                    for i in range(num_outputs):
                        self.assertTrue(
                            torch.allclose(model_output[i], loaded_output[i]),
                            f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                        )

                # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
                # (Even with this call, there are still memory leak by ~0.04MB)
                self.clear_torch_jit_class_registry()
1213

Patrick von Platen's avatar
Patrick von Platen committed
1214
1215
    def test_headmasking(self):
        if not self.test_head_masking:
1216
            return
1217

1218
1219
1220
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
1221

1222
        inputs_dict["output_attentions"] = True
1223
1224
1225
1226
1227
1228
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1229

1230
1231
1232
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1233
1234
1235
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1236
1237
1238
1239
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1240
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1241
            inputs["head_mask"] = head_mask
1242
1243
1244
1245
1246
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1247
1248
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1249
            outputs = model(**inputs, return_dict=True)
1250
1251
1252
1253
1254
1255
1256
1257
1258

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1280
                check_attentions_validity(outputs.cross_attentions)
1281
1282
            else:
                check_attentions_validity(outputs.attentions)
1283

Patrick von Platen's avatar
Patrick von Platen committed
1284
1285
    def test_head_pruning(self):
        if not self.test_pruning:
1286
1287
1288
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1289
1290
1291
1292
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1293

1294
1295
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1296

1297
            inputs_dict["output_attentions"] = True
1298
1299
1300
1301
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1302
1303
1304
1305
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1306
1307
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1308
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1309

1310
            attentions = outputs[-1]
1311

1312
            self.assertEqual(attentions[0].shape[-3], 1)
1313
1314
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1315
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1316

Patrick von Platen's avatar
Patrick von Platen committed
1317
1318
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1319
            return
LysandreJik's avatar
LysandreJik committed
1320

1321
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1322
1323
1324
1325
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1326
1327
1328

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1329

1330
            inputs_dict["output_attentions"] = True
1331
1332
1333
1334
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1335
1336
1337
1338
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1339
            model.prune_heads(heads_to_prune)
1340

1341
            with tempfile.TemporaryDirectory() as temp_dir_name:
1342
1343
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1344
                model.to(torch_device)
1345

1346
            with torch.no_grad():
1347
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1348
1349
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1350
1351
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1352
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1353

Patrick von Platen's avatar
Patrick von Platen committed
1354
1355
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1356
            return
1357

1358
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1359
1360
1361
1362
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1363

1364
1365
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1366

1367
            inputs_dict["output_attentions"] = True
1368
            config.output_hidden_states = False
1369

1370
1371
1372
1373
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1374
            config.pruned_heads = heads_to_prune
1375

1376
1377
1378
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1379

1380
            with torch.no_grad():
1381
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1382
            attentions = outputs[-1]
1383

1384
            self.assertEqual(attentions[0].shape[-3], 1)
1385
1386
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1387
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1388

Patrick von Platen's avatar
Patrick von Platen committed
1389
1390
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1391
            return
1392

1393
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1394
1395
1396
1397
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1398

1399
1400
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1401

1402
            inputs_dict["output_attentions"] = True
1403
            config.output_hidden_states = False
1404

1405
            heads_to_prune = {1: [1, 2]}
1406
            config.pruned_heads = heads_to_prune
1407

1408
1409
1410
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1411

1412
            with torch.no_grad():
1413
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1414
            attentions = outputs[-1]
1415

1416
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1417
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1418

1419
            with tempfile.TemporaryDirectory() as temp_dir_name:
1420
1421
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1422
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1423

1424
            with torch.no_grad():
1425
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1426
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1427

1428
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1429
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1430

1431
            heads_to_prune = {0: [0], 1: [1, 2]}
1432
            model.prune_heads(heads_to_prune)
1433

1434
            with torch.no_grad():
1435
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1436
            attentions = outputs[-1]
1437

1438
1439
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1440

1441
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1442

Patrick von Platen's avatar
Patrick von Platen committed
1443
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1444
        def check_hidden_states_output(inputs_dict, config, model_class):
1445
            model = model_class(config)
1446
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1447
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1448

thomwolf's avatar
thomwolf committed
1449
            with torch.no_grad():
1450
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1451
1452

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1453

Sylvain Gugger's avatar
Sylvain Gugger committed
1454
1455
1456
1457
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1458

Patrick von Platen's avatar
Patrick von Platen committed
1459
1460
1461
1462
1463
1464
1465
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1466
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1467
1468
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1469
            )
thomwolf's avatar
thomwolf committed
1470

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1496
1497
1498
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1499
        config.output_attentions = self.has_attentions
1500
1501
1502
1503
1504
1505
1506
1507
1508

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1509

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1520
1521
1522
1523
1524
1525
1526
1527
1528
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1529
1530
1531
1532
1533

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1534
1535
1536
1537
1538

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1539
1540
1541
1542
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1543
1544
1545
1546

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1547
1548
1549
1550

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1551
1552
1553

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1554

Pradhy729's avatar
Pradhy729 committed
1555
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1556
1557
1558
1559
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1657
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1658
1659
1660
1661
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1662
        if not self.test_resize_embeddings:
1663
1664
1665
1666
1667
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1668
            model.to(torch_device)
1669

Patrick von Platen's avatar
Patrick von Platen committed
1670
1671
1672
            if self.model_tester.is_training is False:
                model.eval()

1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1683
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1684
            model(**self._prepare_for_class(inputs_dict, model_class))
1685
1686
1687
1688
1689
1690
1691

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1692
1693
1694
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1695
1696
1697
1698

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1699
            model(**self._prepare_for_class(inputs_dict, model_class))
1700

1701
1702
1703
1704
1705
1706
1707
1708
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

Arthur's avatar
Arthur committed
1720
1721
1722
            self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
            self.assertTrue(model.config.vocab_size, model.vocab_size)

1723
1724
1725
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1726
1727
1728
1729
1730
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1731
1732
1733
1734
1735
1736
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1788
    def test_model_common_attributes(self):
1789
1790
1791
1792
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1793
1794
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1795
            x = model.get_output_embeddings()
1796
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1797

1798
1799
1800
1801
1802
1803
1804
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1805
    def test_correct_missing_keys(self):
1806
1807
        if not self.test_missing_keys:
            return
1808
1809
1810
1811
1812
1813
1814
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1828
1829
1830
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1831
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1881
1882
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1883
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1900
1901
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
1962
1963
1964
1965
1966
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1967

Sylvain Gugger's avatar
Sylvain Gugger committed
1968
1969
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1970
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
1971
1972
1973
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
1974
1975
1976

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
1977
1978
                placeholder_dict = {"tensor": torch.tensor([1, 2])}
                safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
Sylvain Gugger's avatar
Sylvain Gugger committed
1979
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
1980
1981
1982
1983

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
1984
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1985
1986
1987
1988

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
2000
2001
2002
2003

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
2004
2005
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
2006
2007
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
2028

2029
2030
2031
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
2032
2033
2034
2035
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

2036
2037
2038
2039
2040
2041
2042
2043
2044
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
2045
2046
2047
2048
2049
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
2050
2051
2052
2053
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
2054
2055
2056
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
2057
2058
2059
2060
2061
2062
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

2088
2089
2090
2091
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
2092

2093
2094
2095
2096
2097
2098
2099
2100
2101
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
2102

2103
2104
2105
2106
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
2107

2108
2109
2110
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
2111

2112
2113
2114
2115
2116
2117
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
2118

2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

2136
2137
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2164
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
2165

2166
2167
2168
2169
2170
2171
2172
2173
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
2174

2175
2176
2177
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
2178

2179
2180
2181
2182
2183
2184
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
2185

2186
2187
2188
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
2189

2190
2191
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
2192

2193
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
2194

2195
            # convert to the case of `tuple`
2196
            # appending each key to the current (string) `name`
2197
2198
2199
2200
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
2201

2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
2212
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
2213
                )
2214
            else:
2215
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
2216
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
2217

2218
2219
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
2220

2221
2222
2223
2224
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
2225

2226
2227
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
2228

2229
2230
2231
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
2232

2233
2234
2235
2236
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
2237

2238
2239
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
2240

2241
2242
2243
2244
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
2245

2246
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
2247
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
2248
2249
        else:
            raise ValueError(
2250
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
2251
                f" {type(tf_outputs)} instead."
2252
2253
            )

2254
2255
2256
2257
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
2258
            if isinstance(tensor, bool):
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
2271

2272
        return tf_inputs_dict
2273

2274
2275
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2276

2277
2278
2279
2280
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
2281

2282
2283
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2284

2285
2286
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2287

2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2302
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2303
        import transformers
2304
2305

        for model_class in self.all_model_classes:
2306
2307
2308
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2309
            if not hasattr(transformers, tf_model_class_name):
2310
                # transformers does not have this model in TF version yet
2311
2312
                return

2313
2314
2315
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2316

2317
2318
2319
2320
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2321
2322

            tf_model_class = getattr(transformers, tf_model_class_name)
2323
2324

            pt_model = model_class(config)
2325
2326
2327
2328
2329
2330
2331
2332
2333
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2334
2335
2336
2337
2338
2339
2340
2341
2342

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2343
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2344
2345
2346
2347
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2348
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2349
                pt_inputs_dict_with_labels = None
2350
2351

            # Check we can load pt model in tf and vice-versa with model => model functions
2352
2353
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2354
2355
2356
2357
2358
2359
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2360

2361
2362
2363
2364
2365
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2366
2367
2368
2369
2370

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2371
2372
2373
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2374
2375
2376

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2377
2378
2379
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2380

2381
2382
2383
2384
2385
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2386
2387
2388
2389
2390

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2391
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2392
2393
2394
2395
2396
2397
2398
2399
2400
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2441
            else:
2442
2443
2444
2445
2446
2447
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2448
        elif isinstance(fx_outputs, jnp.ndarray):
2449
2450
2451
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2452
2453
2454
2455
2456

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2457
2458
2459
2460
2461
2462
2463
2464
2465
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2466
2467
2468
2469
2470
2471
2472
2473
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2474
2475
2476
2477
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2478
2479
        else:
            raise ValueError(
2480
2481
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2482
2483
            )

2484
2485
2486
2487
2488
2489
2490
2491
2492
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2493
                    # no flax model exists for this class
2494
2495
                    return

2496
2497
2498
2499
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2500
2501
                fx_model_class = getattr(transformers, fx_model_class_name)

2502
2503
2504
2505
2506
2507
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2508
2509
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2510

2511
2512
2513
2514
2515
2516
2517
2518
2519
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2520
2521
2522
2523
2524
2525
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2526
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2527

2528
2529
2530
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2531
2532
2533
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2534
                with torch.no_grad():
2535
2536
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2537

2538
2539
2540
2541
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2542
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2543
2544
2545
2546
2547

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2548
2549
2550
2551
2552
2553
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2554
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2568
2569
2570
2571
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2572
2573
                fx_model_class = getattr(transformers, fx_model_class_name)

2574
2575
2576
2577
2578
2579
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2580
2581
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2582

2583
2584
2585
2586
2587
2588
2589
2590
2591
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2592
2593
2594
2595
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2596

2597
                # convert inputs to Flax
2598
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2599

2600
2601
2602
2603
2604
2605
2606
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2607

2608
2609
2610
2611
2612
2613
2614
2615
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2616
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2617
2618
2619
2620
2621

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2622
2623
2624
2625
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2626
                with torch.no_grad():
2627
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2628

2629
2630
2631
2632
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2633
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2634

Patrick von Platen's avatar
Patrick von Platen committed
2635
    def test_inputs_embeds(self):
2636
2637
2638
2639
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2640
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2641
            model.eval()
2642

2643
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2644

2645
2646
2647
2648
2649
2650
2651
2652
2653
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2654
2655
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2656
                inputs["inputs_embeds"] = wte(input_ids)
2657
            else:
2658
2659
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2660

thomwolf's avatar
thomwolf committed
2661
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2662
                model(**inputs)[0]
2663

2664
2665
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2666
2667
2668
2669
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2670
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2685
            model = nn.DataParallel(model)
2686
            with torch.no_grad():
2687
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2688

2689
2690
2691
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2692
            return
2693

2694
        # a candidate for testing_utils
2695
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2696
            """returns a list of cuda memory allocations per GPU in MBs"""
2697
2698
2699
2700
2701

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2702
2703
2704
2705
2706
2707
2708
2709
2710

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2711
2712
2713
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2714

2715
2716
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2717
2718
2719
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2720
2721
2722
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2723
            del model
2724
            gc.collect()
2725
2726
            torch.cuda.empty_cache()

2727
2728
2729
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2730
2731

            # Spread model layers over multiple devices
2732
            model = model_class(config)
2733
2734
2735
2736
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2737
            for n in range(len(model.device_map.keys())):
2738
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2739

2740
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2741
2742
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2743
2744
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2745
2746
2747
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2748
            gc.collect()
2749
2750
2751
2752
2753
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2754
            return
2755
2756
2757
2758
2759
2760

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2761
            def cast_to_device(dictionary, device):
2762
2763
2764
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2765
                        output[k] = v.to(device)
2766
2767
2768
2769
2770
                    else:
                        output[k] = v

                return output

2771
2772
2773
2774
2775
2776
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2777
2778
2779
2780
2781
2782
2783
2784

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2799
    @require_accelerate
2800
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2801
    @require_torch_gpu
2802
    def test_disk_offload_bin(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
2803
2804
2805
2806
2807
2808
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2809
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2810
2811
            model = model_class(config).eval()
            model = model.to(torch_device)
2812
            torch.manual_seed(0)
2813
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2814
2815
2816

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
2817
                model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
Sylvain Gugger's avatar
Sylvain Gugger committed
2818
2819

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2820
2821
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2822
2823
2824
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2825
2826
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2827
2828
2829
2830
2831
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2832
                torch.manual_seed(0)
2833
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2834

2835
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2836

2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
    @require_accelerate
    @mark.accelerate_tests
    @require_torch_gpu
    def test_disk_offload_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config).eval()
            model = model.to(torch_device)
            torch.manual_seed(0)
            base_output = model(**inputs_dict_class)

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}

                # This doesn't error out as it's in safetensors and doesn't need an offload folder
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict_class)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

2869
    @require_accelerate
2870
    @mark.accelerate_tests
2871
2872
2873
2874
2875
2876
2877
2878
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2879
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2880
2881
            model = model_class(config).eval()
            model = model.to(torch_device)
2882
2883

            torch.manual_seed(0)
2884
            base_output = model(**inputs_dict_class)
2885
2886
2887

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
2888
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2899
2900

                    torch.manual_seed(0)
2901
                    new_output = new_model(**inputs_dict_class)
2902

2903
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2904
2905

    @require_accelerate
2906
    @mark.accelerate_tests
2907
2908
2909
2910
2911
2912
2913
2914
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2915
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2916
2917
            model = model_class(config).eval()
            model = model.to(torch_device)
2918
2919

            torch.manual_seed(0)
2920
            base_output = model(**inputs_dict_class)
2921
2922
2923

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2924
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2935
2936

                    torch.manual_seed(0)
2937
                    new_output = new_model(**inputs_dict_class)
2938

2939
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2940

2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2951
2952
2953
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2954
            ]:
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2973
2974
2975
2976
2977
2978
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2979
2980
2981
2982
2983
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2984

2985
2986
                    loss.backward()

2987
    def test_load_with_mismatched_shapes(self):
2988
2989
        if not self.test_mismatched_shapes:
            return
2990
2991
2992
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2993
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2994
2995
2996
2997
2998
2999
3000
3001
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
3002
                    with self.assertRaises(RuntimeError):
3003
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
3004
3005
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
3006
3007

                    logger = logging.get_logger("transformers.modeling_utils")
3008

3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
    def test_mismatched_shapes_have_properly_initialized_weights(self):
        if not self.test_mismatched_shapes:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)

        for model_class in self.all_model_classes:
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(configs_no_init)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(RuntimeError):
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)

                    logger = logging.get_logger("transformers.modeling_utils")

                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    for name, param in new_model.named_parameters():
                        if param.requires_grad:
                            self.assertIn(
                                ((param.data.mean() * 1e9).round() / 1e9).item(),
                                [0.0, 1.0],
                                msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                            )

    def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
        # 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
        class MyClass(PreTrainedModel):
            config_class = PretrainedConfig

            def __init__(self, config=None):
                super().__init__(config if config is not None else PretrainedConfig())
                self.linear = nn.Linear(10, config.num_labels, bias=True)
                self.embedding = nn.Embedding(10, 10)
                self.std = 1

            def _init_weights(self, module):
                if isinstance(module, nn.Linear):
                    module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
                    if module.bias is not None:
                        module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)

        # Used to make sure the weights with matched shape are loaded correctly
        config = PretrainedConfig()
        config.num_labels = 3
        model = MyClass(config=config)

        # Used to make sure the weights with mismatched shape are properly initialized
        set_seed(0)
        config = PretrainedConfig()
        config.num_labels = 4
        # not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
        # same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
        # for `linear` part.
        with ContextManagers([no_init_weights(True)]):
            target_model = MyClass(config=config)
        target_model.apply(target_model._initialize_weights)

        with tempfile.TemporaryDirectory() as tmpdirname:
            state_dict = model.state_dict()
            del state_dict["linear.weight"]

            model.config.save_pretrained(tmpdirname)
            torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

            set_seed(0)
            new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)

            for key in new_model.state_dict().keys():
                # check weight values for weights with matched shapes are identical
                # (i.e. correctly loaded from the checkpoint)
                if key not in ["linear.weight", "linear.bias"]:
                    max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `model` are  not identical",
                    )
                else:
                    # check we have some mismatched shapes
                    self.assertNotEqual(
                        model.state_dict()[key].shape,
                        new_model.state_dict()[key].shape,
                        msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
                    )
                    # check the weights with mismatched shape are properly initialized
                    max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
                    self.assertLessEqual(
                        max_diff.item(),
                        1e-6,
                        msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
                    )

3135
3136
3137
3138
3139
3140
3141
3142
3143
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
3144
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
3145

3146
3147
3148
3149
3150
3151
3152
3153
3154
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3155
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3156
3157
3158
3159
3160
3161

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
3162
                    tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3178
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3179

3180
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3181
3182
3183
3184
3185
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3186
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3187
3188
3189
3190
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
3191
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3192
3193
3194
                )
                model.to(torch_device)

3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)

                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, 1:] = 1
                    dummy_attention_mask[:, :1] = 0
3205

3206
3207
3208
3209
3210
3211
3212
3213
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]

                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3214

3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3225

3226
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
3227

3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3259

3260
                assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
3261

3262
3263
                # check with inference + dropout
                model.train()
3264
                _ = model_fa(dummy_input, **other_inputs)
3265

3266
3267
3268
3269
3270
3271
3272
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
3273
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3274

3275
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3276
3277
3278
3279
3280
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
3281
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3282
3283
3284
3285
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
3286
                    tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
3287
3288
3289
                )
                model.to(torch_device)

3290
3291
3292
3293
3294
                dummy_input = inputs_dict[model.main_input_name][:1]
                if dummy_input.dtype in [torch.float32, torch.float16]:
                    dummy_input = dummy_input.to(torch.bfloat16)

                dummy_attention_mask = inputs_dict.get("attention_mask", None)
3295

3296
3297
3298
3299
                if dummy_attention_mask is not None:
                    dummy_attention_mask = dummy_attention_mask[:1]
                    dummy_attention_mask[:, :-1] = 1
                    dummy_attention_mask[:, -1:] = 0
3300

3301
3302
                if model.config.is_encoder_decoder:
                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
3303

3304
3305
3306
3307
3308
                    outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
                else:
                    outputs = model(dummy_input, output_hidden_states=True)
                    outputs_fa = model_fa(dummy_input, output_hidden_states=True)
3309

3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )
3320

3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
                assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)

                if model.config.is_encoder_decoder:
                    other_inputs = {
                        "decoder_input_ids": decoder_input_ids,
                        "decoder_attention_mask": dummy_attention_mask,
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)
                else:
                    other_inputs = {
                        "output_hidden_states": True,
                    }
                    if dummy_attention_mask is not None:
                        other_inputs["attention_mask"] = dummy_attention_mask

                    outputs = model(dummy_input, **other_inputs)
                    outputs_fa = model_fa(dummy_input, **other_inputs)

                logits = (
                    outputs.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs.decoder_hidden_states[-1]
                )
                logits_fa = (
                    outputs_fa.hidden_states[-1]
                    if not model.config.is_encoder_decoder
                    else outputs_fa.decoder_hidden_states[-1]
                )

                assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
3356
3357
3358
3359
3360
3361
3362
3363

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_left_padding(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3364
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3365

3366
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3367
3368
3369
3370
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3371
3372
3373
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3374

3375
3376
3377
3378
3379
3380
3381
3382
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # make sure we do left padding
                dummy_attention_mask[:, :-1] = 0
                dummy_attention_mask[:, -1:] = 1
3383
3384
3385
3386
3387
3388

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3389
3390
3391
3392
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3393
3394
3395
3396
3397
3398
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3399
                self.assertTrue(torch.allclose(out, out_fa))
3400
3401
3402
3403
3404
3405
3406
3407

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3408
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3409

3410
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3411
3412
3413
3414
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
3415
3416
3417
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
3418

3419
3420
3421
3422
3423
                dummy_input = inputs_dict[model.main_input_name]
                if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                    dummy_input = dummy_input.to(torch.float16)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3424
                # make sure we do right padding
3425
3426
                dummy_attention_mask[:, :-1] = 1
                dummy_attention_mask[:, -1:] = 0
3427
3428
3429
3430
3431
3432

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
3433
3434
3435
3436
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
3437
3438
3439
3440
3441
3442
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

3443
                self.assertTrue(torch.allclose(out, out_fa))
3444

3445
3446
3447
3448
3449
3450
3451
    @parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_inference(self, torch_dtype: str):
        if not self.all_model_classes[0]._supports_sdpa:
            self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")

fxmarty's avatar
fxmarty committed
3452
3453
3454
3455
3456
3457
3458
        if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
            self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")

        if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
            self.skipTest(
                f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
            )
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474

        # Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
        if torch_dtype == "float16":
            torch_dtype = torch.float16
        elif torch_dtype == "bfloat16":
            torch_dtype = torch.bfloat16
        elif torch_dtype == "float32":
            torch_dtype = torch.float32

        atols = {
            ("cpu", False, torch.float32): 1e-6,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-6,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-6,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3475
            ("cuda", False, torch.float16): 5e-3,
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
            ("cuda", True, torch.float32): 1e-6,
            ("cuda", True, torch.bfloat16): 1e-2,
            ("cuda", True, torch.float16): 5e-3,
        }
        rtols = {
            ("cpu", False, torch.float32): 1e-4,
            ("cpu", False, torch.bfloat16): 1e-2,
            ("cpu", True, torch.float32): 1e-4,
            ("cpu", True, torch.bfloat16): 1e-2,
            ("cuda", False, torch.float32): 1e-4,
            ("cuda", False, torch.bfloat16): 1e-2,
fxmarty's avatar
fxmarty committed
3487
            ("cuda", False, torch.float16): 5e-3,
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
            ("cuda", True, torch.float32): 1e-4,
            ("cuda", True, torch.bfloat16): 3e-2,
            ("cuda", True, torch.float16): 5e-3,
        }

        def get_mean_reldiff(failcase, x, ref, atol, rtol):
            return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            is_encoder_decoder = model.config.is_encoder_decoder

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
                model_sdpa = model_sdpa.eval().to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch_dtype,
                    attn_implementation="eager",
                )
                model_eager = model_eager.eval().to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa and model_sdpa.config.model_type != "falcon":
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model,
                # but it would be nicer to have an efficient way to use parameterized.expand
                fail_cases = []
                for padding_side in ["left", "right"]:
                    for use_mask in [False, True]:
                        for batch_size in [1, 5]:
                            dummy_input = inputs_dict[model.main_input_name]

                            if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                dummy_input = dummy_input.to(torch_dtype)

                            dummy_input = dummy_input[:batch_size]
                            if dummy_input.shape[0] != batch_size:
                                if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
                                    extension = torch.rand(
                                        batch_size - dummy_input.shape[0],
                                        *dummy_input.shape[1:],
                                        dtype=torch_dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
                                else:
                                    extension = torch.randint(
                                        high=5,
                                        size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
                                        dtype=dummy_input.dtype,
                                        device=torch_device,
                                    )
                                    dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)

                            if not use_mask:
                                dummy_attention_mask = None
                            else:
                                dummy_attention_mask = inputs_dict.get("attention_mask", None)
                                if dummy_attention_mask is None:
                                    if is_encoder_decoder:
                                        seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
                                    else:
                                        seqlen = dummy_input.shape[-1]
                                    dummy_attention_mask = (
                                        torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
                                    )

                                dummy_attention_mask = dummy_attention_mask[:batch_size]
                                if dummy_attention_mask.shape[0] != batch_size:
                                    extension = torch.ones(
                                        batch_size - dummy_attention_mask.shape[0],
                                        *dummy_attention_mask.shape[1:],
                                        dtype=dummy_attention_mask.dtype,
                                        device=torch_device,
                                    )
                                    dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
                                    dummy_attention_mask = dummy_attention_mask.to(torch_device)

                                dummy_attention_mask[:] = 1
                                if padding_side == "left":
                                    dummy_attention_mask[-1, :-1] = 1
                                    dummy_attention_mask[-1, -4:] = 0
                                elif padding_side == "right":
                                    dummy_attention_mask[-1, 1:] = 1
                                    dummy_attention_mask[-1, :3] = 0

                            for enable_kernels in [False, True]:
                                failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
                                if is_encoder_decoder:
                                    decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size]
                                    if decoder_input_ids.shape[0] != batch_size:
                                        extension = torch.ones(
                                            batch_size - decoder_input_ids.shape[0],
                                            *decoder_input_ids.shape[1:],
                                            dtype=decoder_input_ids.dtype,
                                            device=torch_device,
                                        )
                                        decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
                                        decoder_input_ids = decoder_input_ids.to(torch_device)

                                    # TODO: never an `attention_mask` arg here?
                                    other_inputs = {
                                        "decoder_input_ids": decoder_input_ids,
                                        "decoder_attention_mask": dummy_attention_mask,
                                        "output_hidden_states": True,
                                    }
                                else:
                                    other_inputs = {
                                        "output_hidden_states": True,
                                    }

                                    # Otherwise fails for e.g. WhisperEncoderModel
                                    if "attention_mask" in inspect.signature(model_eager.forward).parameters:
                                        other_inputs["attention_mask"] = dummy_attention_mask

                                # TODO: test gradients as well (& for FA2 as well!)
                                with torch.no_grad():
                                    with torch.backends.cuda.sdp_kernel(
                                        enable_flash=enable_kernels,
                                        enable_math=True,
                                        enable_mem_efficient=enable_kernels,
                                    ):
                                        outputs_eager = model_eager(dummy_input, **other_inputs)
                                        outputs_sdpa = model_sdpa(dummy_input, **other_inputs)

                                logits_eager = (
                                    outputs_eager.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_eager.decoder_hidden_states[-1]
                                )
                                logits_sdpa = (
                                    outputs_sdpa.hidden_states[-1]
                                    if not is_encoder_decoder
                                    else outputs_sdpa.decoder_hidden_states[-1]
                                )

                                if torch_device in ["cpu", "cuda"]:
                                    atol = atols[torch_device, enable_kernels, torch_dtype]
                                    rtol = rtols[torch_device, enable_kernels, torch_dtype]
                                else:
                                    atol = 1e-7
                                    rtol = 1e-4

                                # Masked tokens output slightly deviates - we don't mind that.
                                if use_mask:
                                    if padding_side == "left":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, :-4]
                                        sub_eager = logits_eager[-1, :-4]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, -4:]
                                        # sub_eager = logits_eager[-1, -4:]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
                                    elif padding_side == "right":
                                        sub_sdpa = logits_sdpa[:-1]
                                        sub_eager = logits_eager[:-1]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        sub_sdpa = logits_sdpa[-1, 3:]
                                        sub_eager = logits_eager[-1, 3:]
                                        if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                            fail_cases.append(
                                                get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
                                            )

                                        # Testing the padding tokens is not really meaningful but anyway
                                        # sub_sdpa = logits_sdpa[-1, :3]
                                        # sub_eager = logits_eager[-1, :3]
                                        # if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
                                        #     fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))

                                else:
                                    if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
                                        fail_cases.append(
                                            get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
                                        )

                self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))

    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        max_new_tokens = 30

        if len(self.all_generative_model_classes) == 0:
            self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_sdpa:
                self.skipTest(f"{model_class.__name__} does not support SDPA")

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                model_sdpa = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")

                model_eager = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    low_cpu_mem_usage=True,
                    attn_implementation="eager",
                ).to(torch_device)

                self.assertTrue(model_eager.config._attn_implementation == "eager")

                for name, submodule in model_eager.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        raise ValueError("The eager model should not have SDPA attention layers")

                has_sdpa = False
                for name, submodule in model_sdpa.named_modules():
                    if "SdpaAttention" in submodule.__class__.__name__:
                        has_sdpa = True
                        break
                if not has_sdpa:
                    raise ValueError("The SDPA model should have SDPA attention layers")

                # Just test that a large cache works as expected
                res_eager = model_eager.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                res_sdpa = model_sdpa.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
                )

                self.assertTrue(torch.allclose(res_eager, res_sdpa))

3769
3770
3771
3772
3773
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
3774
3775
        max_new_tokens = 30

3776
3777
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3778
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3779

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

3790
3791
3792
3793
3794
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3795
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
3796
3797

                model = model_class.from_pretrained(
3798
3799
                    tmpdirname,
                    torch_dtype=torch.float16,
3800
                    attn_implementation="flash_attention_2",
3801
                    low_cpu_mem_usage=True,
3802
3803
3804
3805
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
3806
3807
3808
3809
3810
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
3811
3812
                )

3813
3814
3815
3816
3817
3818
3819
3820
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_fp32_ln(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3821
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3822

3823
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
3824
3825
3826
3827
3828
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

3829
3830
3831
3832
3833
3834
                dummy_input = inputs_dict[model.main_input_name]
                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))

                if model.config.is_encoder_decoder:
                    dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
                    dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
3835
3836
3837
3838

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
3839
                    attn_implementation="flash_attention_2",
3840
3841
3842
3843
3844
3845
3846
3847
3848
                    low_cpu_mem_usage=True,
                    load_in_4bit=True,
                )

                for _, param in model.named_parameters():
                    # upcast only layer norms
                    if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
                        param.data = param.data.to(torch.float32)

3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
                if model.config.is_encoder_decoder:
                    _ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
                    # with attention mask
                    _ = model(
                        dummy_input,
                        attention_mask=dummy_attention_mask,
                        decoder_input_ids=dummy_decoder_input_ids,
                        decoder_attention_mask=dummy_decoder_attention_mask,
                    )
                else:
                    _ = model(dummy_input)
                    # with attention mask
                    _ = model(dummy_input, attention_mask=dummy_attention_mask)
3862

3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
    @is_pt_tf_cross_test
    def test_tf_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have this model in TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
                    self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))

    @is_pt_flax_cross_test
    def test_flax_from_pt_safetensors(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            flax_model_class_name = "Flax" + model_class.__name__  # Add the "Flax at the beginning
            if not hasattr(transformers, flax_model_class_name):
                # transformers does not have this model in Flax version yet
                return

            flax_model_class = getattr(transformers, flax_model_class_name)

            pt_model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname, safe_serialization=True)
                flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                pt_model.save_pretrained(tmpdirname, safe_serialization=False)
                flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)

                # Check models are equal
                self.assertTrue(check_models_equal(flax_model_1, flax_model_2))

3912
3913
3914
3915
3916
3917
3918
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_from_config(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
3919
                self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
3920
3921
3922
3923

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            # TODO: to change it in the future with other relevant auto classes
            fa2_model = AutoModelForCausalLM.from_config(
3924
                config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
            ).to(torch_device)

            dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
            dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

            fa2_correctly_converted = False

            for _, module in fa2_model.named_modules():
                if "FlashAttention" in module.__class__.__name__:
                    fa2_correctly_converted = True
                    break

            self.assertTrue(fa2_correctly_converted)

            _ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)

            with tempfile.TemporaryDirectory() as tmpdirname:
                fa2_model.save_pretrained(tmpdirname)

                model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)

3946
                self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956

                fa2_correctly_converted = False

                for _, module in model_from_pretrained.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        fa2_correctly_converted = True
                        break

                self.assertFalse(fa2_correctly_converted)

3957

3958
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
3959
3960


thomwolf's avatar
thomwolf committed
3961
def ids_tensor(shape, vocab_size, rng=None, name=None):
3962
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
3963
    if rng is None:
3964
        rng = global_rng
thomwolf's avatar
thomwolf committed
3965

thomwolf's avatar
thomwolf committed
3966
3967
3968
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
3969

thomwolf's avatar
thomwolf committed
3970
3971
3972
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
3973

3974
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
3975
3976


3977
3978
3979
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
3980
3981
    # we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
    attn_mask[:, 0] = 1
3982
3983
3984
    return attn_mask


3985
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
3986
    """Creates a random float32 tensor"""
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

3998
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()