optimizer.py 29.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
22
23
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
mohammad's avatar
mohammad committed
24

mohammad's avatar
mohammad committed
25
26
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
27
from megatron import print_rank_0
28
29
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
30
31
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
32
from megatron.utils import unwrap_model
33

34
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
35

Lawrence McAfee's avatar
Lawrence McAfee committed
36
37
38
39
# >>>
from lutil import pax, tp, print_seq
# <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
40

mohammad's avatar
mohammad committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


56
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
57
58
59
60
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
61
62
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63
64
65
66
67
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
68
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
69
70
71
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

72

mohammad's avatar
mohammad committed
73
74
75

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
77
78

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
79
                 params_have_main_grad,
80
81
                 use_contiguous_buffers_in_local_ddp,
                 models):
82

mohammad's avatar
mohammad committed
83
84
85
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86
87
88
89
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
90
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
91

92
93
94
95
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

96
        if self.use_contiguous_buffers_in_local_ddp:
97
98
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
99

100

Rewon Child's avatar
Rewon Child committed
101
    def get_parameters(self):
102
103
104
105
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
106
107
        return params

108

109
    def get_main_grads_for_grad_norm(self):
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

        # Filter parameters based on:
        #   - grad should not be none
        #   - parameter should not be shared
        #   - should not be a replica due to tensor model parallelism
        params = self.get_parameters()
        grads_for_norm = []
        for param in params:
            grad = param.grad
            grad_not_none = grad is not None
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if grad_not_none and is_not_shared and is_not_tp_duplicate:
                grads_for_norm.append(grad)

        return grads_for_norm

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
127

128
129
130
131
132
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


133
    def clip_grad_norm(self, clip_grad):
Lawrence McAfee's avatar
Lawrence McAfee committed
134
        params = self.get_parameters()
135
        grads_for_norm = self.get_main_grads_for_grad_norm()
136
        return clip_grad_norm_fp32(
137
            params, grads_for_norm, clip_grad,
138
            model_parallel_group=self.get_model_parallel_group())
139

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140

Rewon Child's avatar
Rewon Child committed
141
142
    def count_zeros(self):
        params = self.get_parameters()
143
144
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
145

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
146

mohammad's avatar
mohammad committed
147
148
149
150
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151

mohammad's avatar
mohammad committed
152
153
    @abstractmethod
    def get_loss_scale(self):
154
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
155
156
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
157

mohammad's avatar
mohammad committed
158
159
160
161
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162

163
164
    @abstractmethod
    def reload_model_params(self):
165
166
167
168
169
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
170
171
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172

mohammad's avatar
mohammad committed
173
174
175
176
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

mohammad's avatar
mohammad committed
178
179
180
181
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
182

mohammad's avatar
mohammad committed
183
184
185
186
187
188
189
190
191
192
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
193

mohammad's avatar
mohammad committed
194
195
196
197
198
199
200
201
202
203
204
205
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


206
    @abstractmethod
207
    def step(self, args, timers):
208
209
        pass

210
    def gather_model_params(self, args, timers):
211
212
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
213
214
        pass

215
    def allreduce_word_embedding_grads(self, args):
216
217
        '''
        All-reduce word embedding grads.
218

219
220
221
222
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
223
224
225
226

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
227
                unwrapped_model = self.models[0]
228
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
229
                unwrapped_model = self.models[-1]
230
            else:  # We do not support the interleaved schedule for T5 yet.
231
                unwrapped_model = self.models[0]
232
233
234
235
236
237
238
239
240
241
242
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

243
    def allreduce_position_embedding_grads(self, args):
244
245
246
247
248
249
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
250
251
252
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
253
            unwrapped_model = self.models[0]
254
255
256
257
258
259
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
260

261
262
263
    def allreduce_embedding_grads(self, args):
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
264

265
    def reduce_model_grads(self, args, timers):
266
267
268
269

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
270
271
            for model in self.models:
                model.allreduce_gradients()
272
273
274
275
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
276
        self.allreduce_embedding_grads(args)
277
278
        timers('backward-embedding-all-reduce').stop()

279

280
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
283
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
284
                 fp16, bf16, grad_scaler,
285
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
286

Lawrence McAfee's avatar
Lawrence McAfee committed
287
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
            optimizer, clip_grad, log_num_zeros_in_grad,
289
290
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
291

292
        self.fp16 = fp16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
293
        self.bf16 = bf16
mohammad's avatar
mohammad committed
294
        self.grad_scaler = grad_scaler
295

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
296
297
298
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
299
300
301

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
302
303
304
305
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
306
307

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
308
309
310
311
312
313
314
315
316
317
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
318

Lawrence McAfee's avatar
Lawrence McAfee committed
319
320
321
322
323
324
325

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
326
327
328
329
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


330
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
331
332
333
334
335
336
337
338
339
340
341
342
343

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
344
345
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
346
347
348
349
350
351

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
352
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     DEBUG_ITERATION = ITERATION
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             # prefix = "            + "
    #             prefix = ""
    #             print("%sbr/%s; [r%d, i%d]; %s, %.12e" % (prefix, "fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
408
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
409
410

    @torch.no_grad()
411
    def step(self, args, timers):
412

Lawrence McAfee's avatar
Lawrence McAfee committed
413
414
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
415
        self._copy_model_grads_to_main_grads()
Lawrence McAfee's avatar
Lawrence McAfee committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
439
            grad_norm = self.clip_grad_norm(self.clip_grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
440
441
442
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
443
        timers('optimizer-count-zeros').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
444
445
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
446
        timers('optimizer-count-zeros').stop()
Lawrence McAfee's avatar
Lawrence McAfee committed
447

448
        # Step the optimizer.
449
        timers('optimizer-inner-step').start()
450
        self.optimizer.step()
451
        timers('optimizer-inner-step').stop()
452

Lawrence McAfee's avatar
Lawrence McAfee committed
453
454
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
455
        self._copy_main_params_to_model_params()
Lawrence McAfee's avatar
Lawrence McAfee committed
456
457
458
459
460
461
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


462
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
489
                 fp16, bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
490
491
492
493

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
494
            fp16, bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
495

mohammad's avatar
mohammad committed
496
        # ======================
497
        # main parameter stuff
mohammad's avatar
mohammad committed
498
499
500
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
502
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
503
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
504
505
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
506
507
508
509
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510
            float16_params_this_group = []
mohammad's avatar
mohammad committed
511
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
513
514
515
516
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
517
518
519
520
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
521
                        # Create a copy
522
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
523
                        # Copy tensor model parallel attributes.
524
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
525
                                                                  param)
526
                        if hasattr(param, 'shared'):
527
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
528
                        # Replace the optimizer params with the new fp32 copy.
529
                        param_group['params'][i] = main_param
530

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
                        fp32_from_float16_params_this_group.append(main_param)
532
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
533
                        if param in self.optimizer.state:
534
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
535
536
537
538
539
540
541
542
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
544
545
546
547
548
549
550
551
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
552
553
554
555
556
557
558
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


559
    # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
560
561
562
563
564
565
566
567
568
569
570
571
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for group in self.float16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)
572
    # <<<
mohammad's avatar
mohammad committed
573
574


575
    def _collect_main_grad_data_for_unscaling(self):
576

577
        main_grads = []
578

579
580
581
582
583
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
584

585
586
587
588
589
590
591
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
592
593


594
595
596
597
598
599
600
601
602
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
603

Lawrence McAfee's avatar
Lawrence McAfee committed
604

605
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
606
607
608
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
609
            for model_param, main_param in zip(model_group, main_group):
610
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
612
613
614
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
615
616
617
618
619

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
620
                if self.params_have_main_grad and \
621
                   not self.use_contiguous_buffers_in_local_ddp:
622
623
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
624
625
626
627
628
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
629

630
631
632
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
633
                    if not self.use_contiguous_buffers_in_local_ddp:
634
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
635

636

637
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
638
639
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
640
641
642
643
644
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
645
646
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
647
648
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
649
650


mohammad's avatar
mohammad committed
651
652
653
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
655
656
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
657
658
659
660
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
661
662
663
664
665
666
667
668
669
670
671
672
673
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
674
675
676
677
678
679
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
680

681
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
684
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
685
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
686
687
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
688
689
690
691
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
692
693
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
694
695
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
696
                 params_have_main_grad,
697
698
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
700
701

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
702
703
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
720
    def step(self, args, timers):
mohammad's avatar
mohammad committed
721
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
722
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
723

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
724
        # Copy main_grads to grads.
725
        timers('optimizer-copy-to-main-grad').start()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
726
727
728
729
730
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

731
732
733
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
734
                    if not self.use_contiguous_buffers_in_local_ddp:
735
                        param.main_grad = None
736
        timers('optimizer-copy-to-main-grad').stop()
737

mohammad's avatar
mohammad committed
738
        # Clip gradients.
739
        timers('optimizer-clip-main-grad').start()
740
        grad_norm = None
mohammad's avatar
mohammad committed
741
        if self.clip_grad > 0.0:
742
            grad_norm = self.clip_grad_norm(self.clip_grad)
743
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
744

Rewon Child's avatar
Rewon Child committed
745
        # count the zeros in the grads
746
        timers('optimizer-count-zeros').start()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
747
748
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
749
        timers('optimizer-count-zeros').stop()
Rewon Child's avatar
Rewon Child committed
750

mohammad's avatar
mohammad committed
751
        # Update parameters.
752
        timers('optimizer-inner-step').start()
mohammad's avatar
mohammad committed
753
        self.optimizer.step()
754
        timers('optimizer-inner-step').stop()
mohammad's avatar
mohammad committed
755
756

        # No overflow for FP32 optimizer.
757
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
758
759


760
761
762
763
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
764
765
766
767
768
769
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)