optimizer.py 27.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 2 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
79
                 use_contiguous_buffers_in_local_ddp,
                 models):
80

mohammad's avatar
mohammad committed
81
82
83
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
84
85
86
87
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
88
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
89

90
91
92
93
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

94
        if self.use_contiguous_buffers_in_local_ddp:
95
96
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
97

Rewon Child's avatar
Rewon Child committed
98
    def get_parameters(self):
99
100
101
102
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
103
104
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
105

106
107
108
109
110
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


Lawrence McAfee's avatar
Lawrence McAfee committed
111
112
    def clip_grad_norm(self, clip_grad, ITERATION):
        params = self.get_parameters()
113
114
115
116
        return clip_grad_norm_fp32(
            params, clip_grad,
            model_parallel_group=self.get_model_parallel_group(),
            ITERATION = ITERATION)
117

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

Rewon Child's avatar
Rewon Child committed
119
120
    def count_zeros(self):
        params = self.get_parameters()
121
122
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
123

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
127
128
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

mohammad's avatar
mohammad committed
130
131
    @abstractmethod
    def get_loss_scale(self):
132
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
133
134
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
135

mohammad's avatar
mohammad committed
136
137
138
139
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140

141
142
    @abstractmethod
    def reload_model_params(self):
143
144
145
146
147
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
148
149
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150

mohammad's avatar
mohammad committed
151
152
153
154
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155

mohammad's avatar
mohammad committed
156
157
158
159
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160

mohammad's avatar
mohammad committed
161
162
163
164
165
166
167
168
169
170
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
171

mohammad's avatar
mohammad committed
172
173
174
175
176
177
178
179
180
181
182
183
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


184
    @abstractmethod
185
    def step(self, args, timers):
186
187
        pass

188
189
190
    def gather_model_params(self, args, timers, ITERATION):
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
191
192
        pass

193
194
195
    def allreduce_word_embedding_grads(self):
        '''
        All-reduce word embedding grads.
196

197
198
199
200
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

221
222
223
224
225
226
227
    def allreduce_position_embedding_grads(self):
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
228
229
230
231
232
233
234
235
236
237
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
238
239
240
241
242

    def allreduce_embedding_grads(self):
        self.allreduce_word_embedding_grads()
        self.allreduce_position_embedding_grads()

243
    def reduce_model_grads(self, args, timers):
244
245
246
247

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
248
249
            for model in self.models:
                model.allreduce_gradients()
250
251
252
253
254
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads()
255
256
        timers('backward-embedding-all-reduce').stop()

257

258
259
# class BaseFloat16Optimizer(MegatronOptimizer):
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
260
261

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
262
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
263
264
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265

Lawrence McAfee's avatar
Lawrence McAfee committed
266
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
267
            optimizer, clip_grad, log_num_zeros_in_grad,
268
269
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270
271

        self.bf16 = bf16
mohammad's avatar
mohammad committed
272
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
273
274
275
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
276
277
278

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
279
280
281
282
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
283
284

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286
287
288
289
290
291
292
293
294
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
295

Lawrence McAfee's avatar
Lawrence McAfee committed
296
297
298
299
300
301
302

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
303
304
305
306
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


307
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
322
323
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
324
325
326
327
328
329

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
330
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             print("            + br/%s; [r%d, i%d]; %s, %.12e" % ("fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
383
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
384
385

    @torch.no_grad()
386
    def step(self, args, timers, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
387

388
        # >>>
389
390
        # self.debug_model(ITERATION, "before copy grad.", 0)
        # self.debug_main(ITERATION, "before copy grad.", 0)
391
392
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
393
394
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
395
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
419
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
420
421
422
423
424
425
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

426
427
428
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
429
430
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
431
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
432
433
434
435
436
437
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
438
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
439
440
# class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
467
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
468
469
470
471

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
472
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
473

mohammad's avatar
mohammad committed
474
        # ======================
475
        # main parameter stuff
mohammad's avatar
mohammad committed
476
477
478
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
479
480
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
481
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
482
483
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
484
485
486
487
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
488
            float16_params_this_group = []
mohammad's avatar
mohammad committed
489
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
491
492
493
494
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
495
496
497
498
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
499
                        # Create a copy
500
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
501
                        # Copy tensor model parallel attributes.
502
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
503
                                                                  param)
504
                        if hasattr(param, 'shared'):
505
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
506
                        # Replace the optimizer params with the new fp32 copy.
507
                        param_group['params'][i] = main_param
508

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
                        fp32_from_float16_params_this_group.append(main_param)
510
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
511
                        if param in self.optimizer.state:
512
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
513
514
515
516
517
518
519
520
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
521
522
523
524
525
526
527
528
529
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
530
531
532
533
534
535
536
537
538
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
539
540
541
542
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
544
            _zero_grad_group_helper(group, set_to_none)
545
546
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
547
548
549
550
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


551
    def _collect_main_grad_data_for_unscaling(self):
552

553
        main_grads = []
554

555
556
557
558
559
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
560

561
562
563
564
565
566
567
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
568
569


570
571
572
573
574
575
576
577
578
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
579

Lawrence McAfee's avatar
Lawrence McAfee committed
580

581
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
583
584
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
585
            for model_param, main_param in zip(model_group, main_group):
586
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
587
588
589
590
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
591
592
593
594
595

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
596
                if self.params_have_main_grad and \
597
                   not self.use_contiguous_buffers_in_local_ddp:
598
599
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
600
601
602
603
604
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
605

606
607
608
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
609
                    if not self.use_contiguous_buffers_in_local_ddp:
610
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
611

612

613
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
615
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
616
617
618
619
620
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
621
622
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
623
624
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
625
626


mohammad's avatar
mohammad committed
627
628
629
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
631
632
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
633
634
635
636
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
637
638
639
640
641
642
643
644
645
646
647
648
649
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
650
651
652
653
654
655
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
656

657
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
658
659
660
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
661
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
662
663
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
664
665
666
667
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
668
669
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
670
671
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
672
                 params_have_main_grad,
673
674
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
675
676
677

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
678
679
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
696
    def step(self, args, timers, ITERATION):
mohammad's avatar
mohammad committed
697
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
698
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
699

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
700
701
702
703
704
705
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

706
707
708
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
709
                    if not self.use_contiguous_buffers_in_local_ddp:
710
711
                        param.main_grad = None

mohammad's avatar
mohammad committed
712
        # Clip gradients.
713
        grad_norm = None
mohammad's avatar
mohammad committed
714
        if self.clip_grad > 0.0:
715
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
mohammad's avatar
mohammad committed
716

Rewon Child's avatar
Rewon Child committed
717
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
718
719
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
720

mohammad's avatar
mohammad committed
721
722
723
724
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
725
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
726
727


728
729
730
731
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
732
733
734
735
736
737
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)