optimizer.py 20.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


48
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
49
50
51
52
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
53
54
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
59
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
60
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

64

mohammad's avatar
mohammad committed
65
66
67

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
68
69
70

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
71
72
73
                 params_have_main_grad,
                 use_contiguous_buffers_in_ddp):

mohammad's avatar
mohammad committed
74
75
76
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
77
78
79
80
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
81
        self.use_contiguous_buffers_in_ddp = use_contiguous_buffers_in_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82

mohammad's avatar
mohammad committed
83

Rewon Child's avatar
Rewon Child committed
84
    def get_parameters(self):
85
86
87
88
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
89
90
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
91

Rewon Child's avatar
Rewon Child committed
92
93
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
94
        return clip_grad_norm_fp32(params, clip_grad)
95

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
96

Rewon Child's avatar
Rewon Child committed
97
98
99
100
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
101

mohammad's avatar
mohammad committed
102
103
104
105
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106

mohammad's avatar
mohammad committed
107
108
    @abstractmethod
    def get_loss_scale(self):
109
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
110
111
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
112

mohammad's avatar
mohammad committed
113
114
115
116
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
117

mohammad's avatar
mohammad committed
118
119
120
121
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122

123
124
    @abstractmethod
    def reload_model_params(self):
125
126
127
128
129
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
130
131
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
132

mohammad's avatar
mohammad committed
133
134
135
136
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137

mohammad's avatar
mohammad committed
138
139
140
141
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142

mohammad's avatar
mohammad committed
143
144
145
146
147
148
149
150
151
152
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153

mohammad's avatar
mohammad committed
154
155
156
157
158
159
160
161
162
163
164
165
166
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class Float16OptimizerWithFloat16Params(MegatronOptimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a contihuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
193
194
                 params_have_main_grad, use_contiguous_buffers_in_ddp,
                 bf16, grad_scaler):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
195
196
197

        super(Float16OptimizerWithFloat16Params, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
198
            params_have_main_grad, use_contiguous_buffers_in_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
199
200

        self.bf16 = bf16
mohammad's avatar
mohammad committed
201
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
203
204
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
205
206
207

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209
210
211
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
212
213

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
214
215
216
217
218
219
220
221
222
223
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
224
225

        # ======================
226
        # main parameter stuff
mohammad's avatar
mohammad committed
227
228
229
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
230
231
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
232
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
233
234
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
235
236
237
238
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
239
            float16_params_this_group = []
mohammad's avatar
mohammad committed
240
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
241
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
242
243
244
245
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
246
247
248
249
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
250
                        # Create a copy
251
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
252
                        # Copy tensor model parallel attributes.
253
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
254
                                                                  param)
255
                        if hasattr(param, 'shared'):
256
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
257
                        # Replace the optimizer params with the new fp32 copy.
258
                        param_group['params'][i] = main_param
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
259
                        fp32_from_float16_params_this_group.append(main_param)
260
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
261
                        if param in self.optimizer.state:
262
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
263
264
265
266
267
268
269
270
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
271
272
273
274
275
276
277
278
279
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
280
281
282
283
284
285
286
287
288
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
289
290
291
292
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
293
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
294
            _zero_grad_group_helper(group, set_to_none)
295
296
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
297
298
299
300
301
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
302
303
        if self.grad_scaler is None:
            return self._scale_one
mohammad's avatar
mohammad committed
304
305
306
        return self.grad_scaler.scale


307
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
308
309
310
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
311
            for model_param, main_param in zip(model_group, main_group):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
312
313
314
315
316
                if self.params_have_main_grad:
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
317
318
319
320
321
322
323
324

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
                if not self.use_contiguous_buffers_in_ddp:
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
325
326
327
328
329
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
330

331
332
333
334
335
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
                    if not self.use_contiguous_buffers_in_ddp:
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
336

337
338
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
339
340
        # fp32 params fromm float16 ones.
        for main_group in self.fp32_from_float16_groups:
341
342
343
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
344
        # Append fp32 parameters.
345
346
347
348
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
349
350
351
352
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
353
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
354
355
356
357
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
358
359
360
361
362
363

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
364
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
365
        model_data = []
366
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
368
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
369
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
370
                model_data.append(model_param.data)
371
372
                main_data.append(main_param.data)
        return model_data, main_data
373
374


375
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
376
377
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
378
379
380
381
382
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
383
384
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
385
386
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
387
388
389


    def reload_model_params(self):
390
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
391

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392

mohammad's avatar
mohammad committed
393
394
395
396
397
    @torch.no_grad()
    def step(self):

        timers = get_timers()

398
399
400
401
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
402

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
403
404
405
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:
mohammad's avatar
mohammad committed
406

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
407
408
409
410
            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
411

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
413
414
415
416
417
418
            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None
mohammad's avatar
mohammad committed
419

420
421
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
422
423
424
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
425
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
426

Rewon Child's avatar
Rewon Child committed
427
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
428
429
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
430

mohammad's avatar
mohammad committed
431
432
433
        # Step the optimizer.
        self.optimizer.step()

434
435
436
437
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
438

mohammad's avatar
mohammad committed
439
        # Successful update.
440
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
441
442


mohammad's avatar
mohammad committed
443
444
445
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
446
447
448
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
449
450
451
452
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
453
454
455
456
457
458
459
460
461
462
463
464
465
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
466
467
468
469
470
471
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
472

473
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
474
475
476
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
477
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
479
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
480
481
482
483
484
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)



mohammad's avatar
mohammad committed
485
486
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
487
488
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
489
490
                 params_have_main_grad,
                 use_contiguous_buffers_in_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
492
493

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
494
            params_have_main_grad, use_contiguous_buffers_in_ddp)
mohammad's avatar
mohammad committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
513
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
514

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
515
516
517
518
519
520
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

521
522
523
524
525
526
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
                    if not self.use_contiguous_buffers_in_ddp:
                        param.main_grad = None

mohammad's avatar
mohammad committed
527
        # Clip gradients.
528
        grad_norm = None
mohammad's avatar
mohammad committed
529
        if self.clip_grad > 0.0:
530
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
531

Rewon Child's avatar
Rewon Child committed
532
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
533
534
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
535

mohammad's avatar
mohammad committed
536
537
538
539
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
540
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
541
542


543
544
545
546
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
547
548
549
550
551
552
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)