optimizer.py 55.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

Lawrence McAfee's avatar
Lawrence McAfee committed
35
DEBUG_ITERATION = 0 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Lawrence McAfee's avatar
Lawrence McAfee committed
101
    def clip_grad_norm(self, clip_grad, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
102
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
103
        return
Lawrence McAfee's avatar
Lawrence McAfee committed
104
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
105
106
        params = self.get_parameters()
        return clip_grad_norm_fp32(params, clip_grad, ITERATION = ITERATION)
107

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108

Rewon Child's avatar
Rewon Child committed
109
110
111
112
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113

mohammad's avatar
mohammad committed
114
115
116
117
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
    @abstractmethod
    def get_loss_scale(self):
121
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
122
123
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
127
128
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

Lawrence McAfee's avatar
Lawrence McAfee committed
130
    @abstractmethod
131
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
        pass


mohammad's avatar
mohammad committed
135
136
137
138
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

Lawrence McAfee's avatar
Lawrence McAfee committed
140
141
142
143
144
    @abstractmethod
    def gather_params(self):
        pass


145
146
    @abstractmethod
    def reload_model_params(self):
147
148
149
150
151
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
152
153
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154

mohammad's avatar
mohammad committed
155
156
157
158
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159

mohammad's avatar
mohammad committed
160
161
162
163
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164

mohammad's avatar
mohammad committed
165
166
167
168
169
170
171
172
173
174
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175

mohammad's avatar
mohammad committed
176
177
178
179
180
181
182
183
184
185
186
187
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
188
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189
190

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
191
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
192
193
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194

Lawrence McAfee's avatar
Lawrence McAfee committed
195
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196
            optimizer, clip_grad, log_num_zeros_in_grad,
197
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

199
200
201
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
        self.bf16 = bf16
mohammad's avatar
mohammad committed
203
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
207
208
209

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
211
212
213
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
214
215

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
217
218
219
220
221
222
223
224
225
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
226

Lawrence McAfee's avatar
Lawrence McAfee committed
227
228
229
230
231
232
233

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
234
235
236
237
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
252
253
254
255
256
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
257
        torch.distributed.all_reduce(self.found_inf,
258
259
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
260
261
262
263
264
265

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    @classmethod
    def debug_general(cls, ITERATION, key, value):
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
                print("            + %4s; [r%d]; %s, %.12e." % ("fix" if args.use_distributed_optimizer else "main", my_rank, key, value))
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)

    def _debug_main(self, ITERATION, key0, key1, f, ff):
        count = sum(
            p.nelement()
            for g in self.optimizer.param_groups
            for p in g["params"]
        )
        return self.debug_general(
            ITERATION,
            "main/%s, %s [count %d]" % (key1, key0, count),
            sum(ff(f(p))
                for g in self.optimizer.param_groups
                for p in g["params"]).item() / count,
        )
    # def debug_main_param_mean(self, ITERATION, key):
    #     return self._debug_main(
    #         ITERATION,
    #         key,
    #         "param mean",
    #         lambda p : p,
    #         torch.mean,
    #     )
    def debug_main_param_sum(self, ITERATION, key):
        return self._debug_main(
            ITERATION,
            key,
            "param sum",
            # lambda p : p,
            lambda p : torch.abs(p),
            torch.sum,
        )
    # def debug_main_grad_mean(self, ITERATION, key):
    #     return self._debug_main(
    #         ITERATION,
    #         key,
    #         "grad mean",
    #         lambda p : p.grad,
    #         torch.mean,
    #     )
    def debug_main_grad_sum(self, ITERATION, key):
        return self._debug_main(
            ITERATION,
            key,
            "grad sum",
            # lambda p : p.grad,
            lambda p : torch.abs(p.grad),
            torch.sum,
        )
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
333
334

    @torch.no_grad()
335
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
338
339
340

        timers = get_timers()

        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
341
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
342
343
        timers('optimizer-copy-to-main-grad').stop()

344
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
345
346
        # self.debug_main_param_sum(ITERATION)
        # self.debug_main_grad_sum(ITERATION)
347
348
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
364
365
366
367
368
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
369
370
371
372
373
374
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
375
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
376
377
378
379
380
381
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

382
383
384
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
385
386
387
388
389
        # >>>
        # self.debug_main_param_sum(ITERATION, "after step.")
        self.debug_main_grad_sum(ITERATION, "after step.")
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
390
391
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
392
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
393
394
        timers('optimizer-copy-main-to-model-params').stop()

395
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
396
397
        self.debug_main_param_sum(ITERATION, "after copy param.")
        self.debug_main_grad_sum(ITERATION, "after copy param.")
398
399
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
400
401
402
403
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
432
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
433
434
435
436

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
437
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
438

mohammad's avatar
mohammad committed
439
        # ======================
440
        # main parameter stuff
mohammad's avatar
mohammad committed
441
442
443
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
444
445
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
446
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
447
448
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
449
450
451
452
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
453
            float16_params_this_group = []
mohammad's avatar
mohammad committed
454
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
455
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
456
457
458
459
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
460
461
462
463
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
464
                        # Create a copy
465
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
466
                        # Copy tensor model parallel attributes.
467
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
468
                                                                  param)
469
                        if hasattr(param, 'shared'):
470
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
471
                        # Replace the optimizer params with the new fp32 copy.
472
                        param_group['params'][i] = main_param
473

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
474
                        fp32_from_float16_params_this_group.append(main_param)
475
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
476
                        if param in self.optimizer.state:
477
478
479
                            # >>>
                            raise Exception("hi.")
                            # <<<
480
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
481
482
483
484
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
485
486
487
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
488
489
490
491
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
492
493
494
495
496
497
498
499
500
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
501
502
503
504
505
506
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
507
508
509
510
511
512
513
514
515
516
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
517
518
519

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
520
521
522
523
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
524
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
525
            _zero_grad_group_helper(group, set_to_none)
526
527
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
528
529
530
531
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


532
    # >>>
533
    def reduce_grads(self, model):
534
535
536
537
538
539
540
541
542
543
544
545
546

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
547

548
549
550
551
552
553
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

554
555
556
557
558
559
560
        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

561
562
563
564
565
566
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

567
568
569
570
571
572
573
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
574
575
576
            # >>>
            raise Exception("hi.")
            # <<<
577
578
579
580
581
582
583
584
585
586
587
588
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
589
590
591
592
593
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
594
                # +++
595
596
597
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
598
599
600
601
602
603
604
605
606
607
608
609
610
611
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
612
613
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
614
            # +++
615
616
617
618
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
619
620
621
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
622
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
623
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
624

625
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
627
628
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
629
            for model_param, main_param in zip(model_group, main_group):
630
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
633
634
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
635
636
637
638
639

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
640
                if self.params_have_main_grad and \
641
                   not self.use_contiguous_buffers_in_local_ddp:
642
643
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
644
645
646
647
648
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
649

650
651
652
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
653
                    if not self.use_contiguous_buffers_in_local_ddp:
654
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
655

656
657
658
659
660
661
662
663
664
665
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
666
667
    def _collect_main_grad_data_for_unscaling(self):

668
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
669
670

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
671
        for main_group in self.fp32_from_float16_groups:
672
673
674
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
675
676
677

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
678
        # Append fp32 parameters.
679
680
681
682
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
683
684
685
686
687
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
688

Lawrence McAfee's avatar
Lawrence McAfee committed
689
        return main_grads
mohammad's avatar
mohammad committed
690
691


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
692
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
693
        model_data = []
694
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
695
696
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
697
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
698
                model_data.append(model_param.data)
699
700
                main_data.append(main_param.data)
        return model_data, main_data
701
702


703
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
704
705
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
706
707
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
708
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
709
710
711
712
713
714
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : [p for m in self.models for p in m.parameters()],
        #     })
715
        # <<<
716
717
718


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
719
720
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
721
722
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
723
724


mohammad's avatar
mohammad committed
725
726
727
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
728
729
730
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
731
732
733
734
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
735
736
737
738
739
740
741
742
743
744
745
746
747
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
748
749
750
751
752
753
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
754

755
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
756
757
758
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
759
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
760
761
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
762
763
764
765
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


766
# >>>
767
import math
768

769
from megatron import get_args
770

Lawrence McAfee's avatar
Lawrence McAfee committed
771
772
773
774
775
776
777
778
779
780
781
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

782
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
783
784
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
785

786
    # >>>
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
818
819
    # <<<

820
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
821
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
822

Lawrence McAfee's avatar
Lawrence McAfee committed
823
824
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
825
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
826
        for param, param_world_indexes in param_world_index_map.items():
827

Lawrence McAfee's avatar
Lawrence McAfee committed
828
829
830
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
831
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
832
833
834
835
836
837
838
839
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
Lawrence McAfee's avatar
Lawrence McAfee committed
840
841
842
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
843
844
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
845
                param_shard_map[param] = {
846
847
848
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
849
850
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
851
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
852
853
854
855

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
856
    def get_model_gbuf_shard(cls, model, dtype):
857

Lawrence McAfee's avatar
Lawrence McAfee committed
858
859
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
860
861

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
862
863
864
865
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

866
867
868
869
870
871
872
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
873
874
875
876
877
878
879
880
881
882
883
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
884
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
885
            "param_map" : param_shard_map,
886
887
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
888
        # pax(1, {"data": data})
889

Lawrence McAfee's avatar
Lawrence McAfee committed
890
        return data
891
892

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
893
    def get_model_gbuf_shard_map(cls, model):
894
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
895
            dtype : cls.get_model_gbuf_shard(model, dtype)
896
897
898
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
899
900
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
901

Lawrence McAfee's avatar
Lawrence McAfee committed
902
903
904
905
906
907
908
909
910
911
912
913
914
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
915

Lawrence McAfee's avatar
Lawrence McAfee committed
916
917
918
919
920
921
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
922

Lawrence McAfee's avatar
Lawrence McAfee committed
923
        return param_gbuf_map
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
945
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
946
947
948
949
950
951
952
953

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

954
955
956
957
958
959
960
961
962
963
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

964
965
966
967
968
969
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
970
971
972
973
974
975
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
976
977
978

        return group_shards

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

1020
1021
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1022
                 bf16, grad_scaler, models):
1023
1024
1025

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
1026
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1027
            bf16, grad_scaler, models)
1028

1029
1030
        # >>>
        args = get_args()
1031
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
1032
        # <<<
1033

Lawrence McAfee's avatar
Lawrence McAfee committed
1034
1035
1036
1037
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
1038

1039
1040
1041
1042
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
1043
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
1044

1045
1046
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

1047
1048
1049
1050
1051
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

1052
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
1053

1054
1055
1056
1057
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
1058

1059
        # >>>
1060
1061
1062
1063
1064
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
1065
1066
        # <<<

1067
1068
1069
1070
1071
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1072
1073
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1074
1075
1076
1077
1078
1079
        # pax(0, {
        #     # "opt_group_shards" : self.opt_group_shards,
        #     # "param_groups" : self.optimizer.param_groups,
        #     "optimizer" : self.optimizer,
        #     "optimizer / state" : self.optimizer.state,
        # })
1080
        # pax(1, {
1081
1082
1083
1084
1085
        #     "optimizer" : self.optimizer,
        #     **{"optimizer / param_groups / %d" % i : g
        #        for i, g in enumerate(self.optimizer.param_groups)},
        #     "optimizer / state" : self.optimizer.state,
        #     "optimizer / state_dict" : self.optimizer.state_dict(),
1086
1087
1088
1089
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]
1127
1128
1129
    def get_world_model_grads(self):
        '''** FOR DEBUGGING. **'''
        return [ p.main_grad for p in self.get_world_model_params() ]
1130
1131
1132
1133
1134

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
1135
    def get_main_param(self, group_index):
1136
1137
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
1138
1139
1140
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

1141
1142
1143
1144
1145
1146
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1147
1148
1149

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1150
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1151
1152
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1153
1154
1155
1156
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1157

1158
1159
        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
Lawrence McAfee's avatar
Lawrence McAfee committed
1160
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1161

1162
        # pax(0, {"model_params": model_params})
1163

1164
1165
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1166
        # >>>
1167
1168
1169
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1170
        # <<<
1171
1172
1173
1174
1175
1176

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]
1177
1178
                gbuf = model._grad_buffers[dtype].data
                gbuf_views = [ gbuf[s.start:s.end] for s in world_shards ]
1179
1180
                gbuf_view_items.append((model_index, dtype, gbuf_views))

1181
1182
1183
1184
1185
                # pax(0, {
                #     "world_shards" : world_shards,
                #     "gbuf_views" : gbuf_views,
                # })

1186
1187
1188
1189
        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1190
    def reduce_grads(self, model):
1191

1192
1193
1194
1195
        # >>>
        timers = get_timers()
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1196
1197
1198
1199
1200
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

1201
1202
1203
1204
1205
1206
1207
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
1208
1209
1210
            # >>>
            raise Exception("hi.")
            # <<<
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
1226
                    raise Exception("only 'main_grad' supported for distrib-opt.")
1227
1228
1229
1230
1231
1232
1233
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<
1234
        timers('backward-embedding-all-reduce').stop()
1235

Lawrence McAfee's avatar
Lawrence McAfee committed
1236
1237
1238
1239
1240
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1241
1242
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1243
        data_parallel_rank = mpu.get_data_parallel_rank()
1244
        data_parallel_world_size = mpu.get_data_parallel_world_size()
Lawrence McAfee's avatar
Lawrence McAfee committed
1245
        data_parallel_group = mpu.get_data_parallel_group()
1246

1247
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1248

1249
1250
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})

1251
        for model_index, dtype, gbuf_views in gbuf_view_items:
1252
1253
1254
1255
1256
1257
1258
1259
1260
            # coalesced /= mpu.get_data_parallel_world_size()
            gbuf = self.models[model_index]._grad_buffers[dtype].data
            torch.mul(gbuf.data, 1. / data_parallel_world_size, out = gbuf.data)
            # gbuf_views = [ t / data_parallel_world_size for t in gbuf_views ]
            # gbuf_d
            # pax(0, {
            #     "data_parallel_world_size" : data_parallel_world_size,
            #     "gbuf" : tp(gbuf),
            # })
1261
1262
1263
1264
1265
1266
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            
1267
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
Lawrence McAfee's avatar
Lawrence McAfee committed
1268

1269
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1270

1271
1272
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1273

1274
1275
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1276
        # All-gather updated main params.
1277
1278
1279
1280
1281
1282
1283
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

1284
        # Each model param now contains its updated values in its
Lawrence McAfee's avatar
Lawrence McAfee committed
1285
        # '.main_grad' field.
1286
1287
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
1288

1289
        # pax(0, {"gbuf_view_items": gbuf_view_items})
1290

Lawrence McAfee's avatar
Lawrence McAfee committed
1291
    def _collect_main_grad_data_for_unscaling(self):
1292
        return [ g.data for g in self.get_main_grads() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1293

1294
1295
1296
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1297
            main_param = self.get_main_param(group_index)
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1309
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
1310

1311
                main_view.detach().copy_(model_view)
1312

1313

1314
1315
    def _copy_model_grads_to_main_grads(self, ITERATION):

Lawrence McAfee's avatar
Lawrence McAfee committed
1316
        for group_index, group_shard in enumerate(self.opt_group_shards):
1317
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1318

1319
                # Model shard.
1320
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1321
                model_shard = self.model_gbuf_shards \
1322
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1323
1324
1325

                assert main_shard.size == model_shard.size

1326
1327
1328
1329
1330
1331
1332
                # pax(0, {
                #     "model_param" : tp(model_param),
                #     "main_shard" : str(main_shard),
                #     "param shard" : self.model_gbuf_shards \
                #     [model_index][dtype]["param_map"][model_param],
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1333
                # Copy from DDP's contiguous buffer to main shard's grad.
1334
                model_grad = self.models[model_index]._grad_buffers[dtype].data
1335
                main_grad = self.get_main_grad(group_index)
Lawrence McAfee's avatar
Lawrence McAfee committed
1336

Lawrence McAfee's avatar
Lawrence McAfee committed
1337
                # Copy sub-range within tensor.
1338
1339
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1340

1341
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1357
        # >>>
1358
1359
1360
1361
1362
1363
1364
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         # "model grads" : self.get_world_model_grads(),
        #         "main_grads" : self.get_main_grads(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1365
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1366

1367

1368
    def _copy_main_params_to_model_params(self, ITERATION):
1369
1370

        for group_index, group_shard in enumerate(self.opt_group_shards):
1371
            for model_param, main_shard in group_shard["param_map"].items():
1372

1373
                model_index, dtype = self.param_gbuf_map[model_param]
1374
                model_shard = self.model_gbuf_shards \
1375
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1376
1377
1378
1379

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1380
                model_param = self.models[model_index]._grad_buffers[dtype].data
1381
                main_param = self.get_main_param(group_index)
1382
1383

                # Copy sub-range within tensor.
1384
1385
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1386
1387
1388
1389

                model_view.detach().copy_(main_view)

                # Debug.
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })
1403

Lawrence McAfee's avatar
Lawrence McAfee committed
1404
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
1405
1406
1407
1408
1409
1410
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : self.get_world_model_params(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1411
        # <<<
1412

1413
1414
# <<<

mohammad's avatar
mohammad committed
1415

mohammad's avatar
mohammad committed
1416
1417
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1418
1419
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1420
                 params_have_main_grad,
1421
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1422
1423
1424

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1425
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1444
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1445

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1446
1447
1448
1449
1450
1451
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1452
1453
1454
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1455
                    if not self.use_contiguous_buffers_in_local_ddp:
1456
1457
                        param.main_grad = None

mohammad's avatar
mohammad committed
1458
        # Clip gradients.
1459
        grad_norm = None
mohammad's avatar
mohammad committed
1460
        if self.clip_grad > 0.0:
1461
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1462

Rewon Child's avatar
Rewon Child committed
1463
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1464
1465
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1466

mohammad's avatar
mohammad committed
1467
1468
1469
1470
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1471
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1472
1473


1474
1475
1476
1477
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1478
1479
1480
1481
1482
1483
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)