optimizer.py 28.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
22
23
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
mohammad's avatar
mohammad committed
24

mohammad's avatar
mohammad committed
25
26
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
27
from megatron import print_rank_0
28
29
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
30
31
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
32
from megatron.utils import unwrap_model
33

34
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
35

Lawrence McAfee's avatar
Lawrence McAfee committed
36

mohammad's avatar
mohammad committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


52
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
54
55
56
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
57
58
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
59
60
61
62
63
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
64
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
66
67
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

68

mohammad's avatar
mohammad committed
69
70
71

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
72
73
74

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
75
                 params_have_main_grad,
76
77
                 use_contiguous_buffers_in_local_ddp,
                 models):
78

mohammad's avatar
mohammad committed
79
80
81
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82
83
84
85
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
86
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
87

88
89
90
91
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

92
        if self.use_contiguous_buffers_in_local_ddp:
93
94
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
95

96

Rewon Child's avatar
Rewon Child committed
97
    def get_parameters(self):
98
99
100
101
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
102
103
        return params

104

105
    def get_main_grads_for_grad_norm(self):
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        # Filter parameters based on:
        #   - grad should not be none
        #   - parameter should not be shared
        #   - should not be a replica due to tensor model parallelism
        params = self.get_parameters()
        grads_for_norm = []
        for param in params:
            grad = param.grad
            grad_not_none = grad is not None
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if grad_not_none and is_not_shared and is_not_tp_duplicate:
                grads_for_norm.append(grad)

        return grads_for_norm

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
123

124
125
126
127
128
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


129
    def clip_grad_norm(self, clip_grad):
Lawrence McAfee's avatar
Lawrence McAfee committed
130
        params = self.get_parameters()
131
        grads_for_norm = self.get_main_grads_for_grad_norm()
132
        return clip_grad_norm_fp32(
133
            params, grads_for_norm, clip_grad,
134
            model_parallel_group=self.get_model_parallel_group())
135

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
136

Rewon Child's avatar
Rewon Child committed
137
138
    def count_zeros(self):
        params = self.get_parameters()
139
140
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
141

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142

mohammad's avatar
mohammad committed
143
144
145
146
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
147

mohammad's avatar
mohammad committed
148
149
    @abstractmethod
    def get_loss_scale(self):
150
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
151
152
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153

mohammad's avatar
mohammad committed
154
155
156
157
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158

159
160
    @abstractmethod
    def reload_model_params(self):
161
162
163
164
165
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
166
167
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168

mohammad's avatar
mohammad committed
169
170
171
172
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
173

mohammad's avatar
mohammad committed
174
175
176
177
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
178

mohammad's avatar
mohammad committed
179
180
181
182
183
184
185
186
187
188
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189

mohammad's avatar
mohammad committed
190
191
192
193
194
195
196
197
198
199
200
201
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


202
    @abstractmethod
203
    def step(self, args, timers):
204
205
        pass

206
    def gather_model_params(self, args, timers):
207
208
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
209
210
        pass

211
    def allreduce_word_embedding_grads(self, args):
212
213
        '''
        All-reduce word embedding grads.
214

215
216
217
218
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
219
220
221
222

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
223
                unwrapped_model = self.models[0]
224
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
225
                unwrapped_model = self.models[-1]
226
            else:  # We do not support the interleaved schedule for T5 yet.
227
                unwrapped_model = self.models[0]
228
229
230
231
232
233
234
235
236
237
238
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

239
    def allreduce_position_embedding_grads(self, args):
240
241
242
243
244
245
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
246
247
248
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
249
            unwrapped_model = self.models[0]
250
251
252
253
254
255
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
256

257
258
259
    def allreduce_embedding_grads(self, args):
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
260

261
    def reduce_model_grads(self, args, timers):
262
263
264
265

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
266
267
            for model in self.models:
                model.allreduce_gradients()
268
269
270
271
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
272
        self.allreduce_embedding_grads(args)
273
274
        timers('backward-embedding-all-reduce').stop()

275

276
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
277
278

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
279
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
280
281
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
282

Lawrence McAfee's avatar
Lawrence McAfee committed
283
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
            optimizer, clip_grad, log_num_zeros_in_grad,
285
286
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
288

        self.bf16 = bf16
mohammad's avatar
mohammad committed
289
        self.grad_scaler = grad_scaler
290

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
291
292
293
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
294
295
296

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
297
298
299
300
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
301
302

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
303
304
305
306
307
308
309
310
311
312
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
313

Lawrence McAfee's avatar
Lawrence McAfee committed
314
315
316
317
318
319
320

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
321
322
323
324
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


325
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
326
327
328
329
330
331
332
333
334
335
336
337
338

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
339
340
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
341
342
343
344
345
346

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
347
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     DEBUG_ITERATION = ITERATION
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             # prefix = "            + "
    #             prefix = ""
    #             print("%sbr/%s; [r%d, i%d]; %s, %.12e" % (prefix, "fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
403
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
404
405

    @torch.no_grad()
406
    def step(self, args, timers):
407

Lawrence McAfee's avatar
Lawrence McAfee committed
408
409
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
410
        self._copy_model_grads_to_main_grads()
Lawrence McAfee's avatar
Lawrence McAfee committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
434
            grad_norm = self.clip_grad_norm(self.clip_grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
435
436
437
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
438
        timers('optimizer-count-zeros').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
439
440
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
441
        timers('optimizer-count-zeros').stop()
Lawrence McAfee's avatar
Lawrence McAfee committed
442

443
        # Step the optimizer.
444
        timers('optimizer-inner-step').start()
445
        self.optimizer.step()
446
        timers('optimizer-inner-step').stop()
447

Lawrence McAfee's avatar
Lawrence McAfee committed
448
449
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
450
        self._copy_main_params_to_model_params()
Lawrence McAfee's avatar
Lawrence McAfee committed
451
452
453
454
455
456
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


457
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
484
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
485
486
487
488

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
489
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
490

mohammad's avatar
mohammad committed
491
        # ======================
492
        # main parameter stuff
mohammad's avatar
mohammad committed
493
494
495
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
496
497
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
498
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
500
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
501
502
503
504
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
505
            float16_params_this_group = []
mohammad's avatar
mohammad committed
506
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
507
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
508
509
510
511
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
513
514
515
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
516
                        # Create a copy
517
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
518
                        # Copy tensor model parallel attributes.
519
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
520
                                                                  param)
521
                        if hasattr(param, 'shared'):
522
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
523
                        # Replace the optimizer params with the new fp32 copy.
524
                        param_group['params'][i] = main_param
525

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
526
                        fp32_from_float16_params_this_group.append(main_param)
527
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
528
                        if param in self.optimizer.state:
529
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
530
531
532
533
534
535
536
537
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
538
539
540
541
542
543
544
545
546
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
547
548
549
550
551
552
553
554
555
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
556
557
558
559
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
560
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
561
            _zero_grad_group_helper(group, set_to_none)
562
563
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
564
565
566
567
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


568
    def _collect_main_grad_data_for_unscaling(self):
569

570
        main_grads = []
571

572
573
574
575
576
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
577

578
579
580
581
582
583
584
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
585
586


587
588
589
590
591
592
593
594
595
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
596

Lawrence McAfee's avatar
Lawrence McAfee committed
597

598
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
600
601
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
602
            for model_param, main_param in zip(model_group, main_group):
603
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
604
605
606
607
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
608
609
610
611
612

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
613
                if self.params_have_main_grad and \
614
                   not self.use_contiguous_buffers_in_local_ddp:
615
616
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
617
618
619
620
621
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
622

623
624
625
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
626
                    if not self.use_contiguous_buffers_in_local_ddp:
627
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
628

629

630
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
633
634
635
636
637
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
638
639
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
640
641
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
642
643


mohammad's avatar
mohammad committed
644
645
646
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
647
648
649
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
650
651
652
653
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
654
655
656
657
658
659
660
661
662
663
664
665
666
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
667
668
669
670
671
672
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
673

674
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
675
676
677
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
678
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
679
680
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
681
682
683
684
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
685
686
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
689
                 params_have_main_grad,
690
691
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
692
693
694

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
695
696
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
713
    def step(self, args, timers):
mohammad's avatar
mohammad committed
714
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
715
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
716

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
717
718
719
720
721
722
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

723
724
725
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
726
                    if not self.use_contiguous_buffers_in_local_ddp:
727
728
                        param.main_grad = None

mohammad's avatar
mohammad committed
729
        # Clip gradients.
730
        grad_norm = None
mohammad's avatar
mohammad committed
731
        if self.clip_grad > 0.0:
732
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
733

Rewon Child's avatar
Rewon Child committed
734
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
735
736
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
737

mohammad's avatar
mohammad committed
738
739
740
741
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
742
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
743
744


745
746
747
748
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
749
750
751
752
753
754
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)