"megatron/data/preprocess_data.py" did not exist on "0f873f979b02a12f9a372332702c7ab7e3d1612d"
optimizer.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
22
23
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
mohammad's avatar
mohammad committed
24

mohammad's avatar
mohammad committed
25
26
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
27
from megatron import print_rank_0
28
29
30
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
from megatron.utils import unwrap_model
mohammad's avatar
mohammad committed
31

Rewon Child's avatar
Rewon Child committed
32
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
# >>>
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate

from lutil import pax
        
get_clippy = lambda params : [ "%d, %d, %d ... %s" % (
    p.grad is not None,
    param_is_not_shared(p),
    param_is_not_tensor_parallel_duplicate(p),
    str(tuple(p.shape)),
) for p in params ]
# <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
48

mohammad's avatar
mohammad committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


64
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
66
67
68
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
69
70
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
71
72
73
74
75
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
76
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
77
78
79
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

80

mohammad's avatar
mohammad committed
81
82
83

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
84
85
86

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
87
                 params_have_main_grad,
88
89
                 use_contiguous_buffers_in_local_ddp,
                 models):
90

mohammad's avatar
mohammad committed
91
92
93
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
94
95
96
97
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
98
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
99

100
101
102
103
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

104
        if self.use_contiguous_buffers_in_local_ddp:
105
106
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
107

Rewon Child's avatar
Rewon Child committed
108
    def get_parameters(self):
109
110
111
112
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
113
114
        return params

115
116
117
118
119
120
    # >>>
    @abstractmethod
    # def get_grads_for_norm(self):
    def _get_main_grads_for_grad_norm(self):
        pass
    # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
121

122
123
124
125
126
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


127
    def clip_grad_norm(self, clip_grad):
Lawrence McAfee's avatar
Lawrence McAfee committed
128
        params = self.get_parameters()
129
        grads_for_norm = self._get_main_grads_for_grad_norm()
130
        return clip_grad_norm_fp32(
131
            params, grads_for_norm, clip_grad,
132
            model_parallel_group=self.get_model_parallel_group())
133

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
134

Rewon Child's avatar
Rewon Child committed
135
136
    def count_zeros(self):
        params = self.get_parameters()
137
138
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
139

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140

mohammad's avatar
mohammad committed
141
142
143
144
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145

mohammad's avatar
mohammad committed
146
147
    @abstractmethod
    def get_loss_scale(self):
148
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
149
150
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151

mohammad's avatar
mohammad committed
152
153
154
155
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

157
158
    @abstractmethod
    def reload_model_params(self):
159
160
161
162
163
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
164
165
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
166

mohammad's avatar
mohammad committed
167
168
169
170
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
171

mohammad's avatar
mohammad committed
172
173
174
175
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
176

mohammad's avatar
mohammad committed
177
178
179
180
181
182
183
184
185
186
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
187

mohammad's avatar
mohammad committed
188
189
190
191
192
193
194
195
196
197
198
199
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


200
    @abstractmethod
201
    def step(self, args, timers):
202
203
        pass

204
    def gather_model_params(self, args, timers):
205
206
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
207
208
        pass

209
    def allreduce_word_embedding_grads(self, args):
210
211
        '''
        All-reduce word embedding grads.
212

213
214
215
216
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
217
218
219
220

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
221
                unwrapped_model = self.models[0]
222
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
223
                unwrapped_model = self.models[-1]
224
            else:  # We do not support the interleaved schedule for T5 yet.
225
                unwrapped_model = self.models[0]
226
227
228
229
230
231
232
233
234
235
236
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

237
    def allreduce_position_embedding_grads(self, args):
238
239
240
241
242
243
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
244
245
246
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
247
            unwrapped_model = self.models[0]
248
249
250
251
252
253
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
254

255
256
257
    def allreduce_embedding_grads(self, args):
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
258

259
    def reduce_model_grads(self, args, timers):
260
261
262
263

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
264
265
            for model in self.models:
                model.allreduce_gradients()
266
267
268
269
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
270
        self.allreduce_embedding_grads(args)
271
272
        timers('backward-embedding-all-reduce').stop()

273

274
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
275
276

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
277
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
278
279
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280

Lawrence McAfee's avatar
Lawrence McAfee committed
281
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
282
            optimizer, clip_grad, log_num_zeros_in_grad,
283
284
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286

        self.bf16 = bf16
mohammad's avatar
mohammad committed
287
        self.grad_scaler = grad_scaler
288

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
289
290
291
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
292
293
294

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
295
296
297
298
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
299
300

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
301
302
303
304
305
306
307
308
309
310
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
311

Lawrence McAfee's avatar
Lawrence McAfee committed
312
313
314
315
316
317
318

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
319
320
321
322
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


323
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
324
325
326
327
328
329
330
331
332
333
334
335
336

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
337
338
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
339
340
341
342
343
344

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
345
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     DEBUG_ITERATION = ITERATION
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             # prefix = "            + "
    #             prefix = ""
    #             print("%sbr/%s; [r%d, i%d]; %s, %.12e" % (prefix, "fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
401
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
402
403

    @torch.no_grad()
404
    def step(self, args, timers):
405

Lawrence McAfee's avatar
Lawrence McAfee committed
406
407
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
408
        self._copy_model_grads_to_main_grads()
Lawrence McAfee's avatar
Lawrence McAfee committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
432
            grad_norm = self.clip_grad_norm(self.clip_grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
433
434
435
436
437
438
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

439
440
441
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
442
443
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
444
        self._copy_main_params_to_model_params()
Lawrence McAfee's avatar
Lawrence McAfee committed
445
446
447
448
449
450
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


451
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
478
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
479
480
481
482

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
483
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
484

mohammad's avatar
mohammad committed
485
        # ======================
486
        # main parameter stuff
mohammad's avatar
mohammad committed
487
488
489
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490
491
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
492
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493
494
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
495
496
497
498
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
            float16_params_this_group = []
mohammad's avatar
mohammad committed
500
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
502
503
504
505
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
506
507
508
509
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
510
                        # Create a copy
511
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
512
                        # Copy tensor model parallel attributes.
513
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
514
                                                                  param)
515
                        if hasattr(param, 'shared'):
516
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
517
                        # Replace the optimizer params with the new fp32 copy.
518
                        param_group['params'][i] = main_param
519

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
520
                        fp32_from_float16_params_this_group.append(main_param)
521
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
522
                        if param in self.optimizer.state:
523
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
524
525
526
527
528
529
530
531
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
532
533
534
535
536
537
538
539
540
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
541
542
543
544
545
546
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

547
548
549
550
551
552
553
554
555
556
557
        # >>>
        # model_params = [ p for m in self.models for p in m.parameters() ]
        # optim_params = self.get_parameters()
        # model_params.sort(key = lambda p : p.nelement(), reverse = True)
        # optim_params.sort(key = lambda p : p.nelement(), reverse = True)
        # # assert len(model_params) == len(optim_params
        # pax(7, {
        #     "model_params" : get_clippy(model_params),
        #     "optim_params" : get_clippy(optim_params),
        # })
        # <<<
mohammad's avatar
mohammad committed
558
559
560

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
561
562
563
564
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
565
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
566
            _zero_grad_group_helper(group, set_to_none)
567
568
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
569
570
571
572
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def _get_main_grads_for_grad_norm(self):

        # Filter parameters based on:
        #   - grad should not be none
        #   - parameter should not be shared
        #   - should not be a replica due to tensor model parallelism
        params = self.get_parameters()
        # grads = []
        grads_for_norm = []
        for param in params:
            grad = param.grad
            grad_not_none = grad is not None
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            # if grad_not_none:
            #     grad = param.grad.detach()
            # if grad_not_none:
            #     # Make sure the grads are in fp32
            #     assert param.grad.type() == 'torch.cuda.FloatTensor'
            #     grads.append(grad)
            if grad_not_none and is_not_shared and is_not_tp_duplicate:
                grads_for_norm.append(grad)

        # pax(0, {"grads_for_norm": [
        #     str(tuple(g.shape))
        #     for g in grads_for_norm
        # ]})

        return grads_for_norm

603
    def _collect_main_grad_data_for_unscaling(self):
604

605
        main_grads = []
606

607
608
609
610
611
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
612

613
614
615
616
617
618
619
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
620
621


622
623
624
625
626
627
628
629
630
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
631

Lawrence McAfee's avatar
Lawrence McAfee committed
632

633
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
634
635
636
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
637
            for model_param, main_param in zip(model_group, main_group):
638
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
639
640
641
642
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
643
644
645
646
647

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
648
                if self.params_have_main_grad and \
649
                   not self.use_contiguous_buffers_in_local_ddp:
650
651
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
652
653
654
655
656
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
657

658
659
660
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
661
                    if not self.use_contiguous_buffers_in_local_ddp:
662
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
663

664

665
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
666
667
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
668
669
670
671
672
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
673
674
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
675
676
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
677
678


mohammad's avatar
mohammad committed
679
680
681
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
684
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
685
686
687
688
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
689
690
691
692
693
694
695
696
697
698
699
700
701
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
702
703
704
705
706
707
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
708

709
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
710
711
712
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
713
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
714
715
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
716
717
718
719
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
720
721
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
722
723
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
724
                 params_have_main_grad,
725
726
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
728
729

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
730
731
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
748
    def step(self, args, timers):
mohammad's avatar
mohammad committed
749
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
750
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
751

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
752
753
754
755
756
757
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

758
759
760
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
761
                    if not self.use_contiguous_buffers_in_local_ddp:
762
763
                        param.main_grad = None

mohammad's avatar
mohammad committed
764
        # Clip gradients.
765
        grad_norm = None
mohammad's avatar
mohammad committed
766
        if self.clip_grad > 0.0:
767
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
768

Rewon Child's avatar
Rewon Child committed
769
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
770
771
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
772

mohammad's avatar
mohammad committed
773
774
775
776
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
777
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
778
779


780
781
782
783
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
784
785
786
787
788
789
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)