optimizer.py 30 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 2 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Lawrence McAfee's avatar
Lawrence McAfee committed
101
102
103
    def clip_grad_norm(self, clip_grad, ITERATION):
        params = self.get_parameters()
        return clip_grad_norm_fp32(params, clip_grad, ITERATION = ITERATION)
104

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
105

Rewon Child's avatar
Rewon Child committed
106
107
108
109
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110

mohammad's avatar
mohammad committed
111
112
113
114
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
115

mohammad's avatar
mohammad committed
116
117
    @abstractmethod
    def get_loss_scale(self):
118
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
119
120
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
121

mohammad's avatar
mohammad committed
122
123
124
125
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126

Lawrence McAfee's avatar
Lawrence McAfee committed
127
    @abstractmethod
128
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
129
130
131
        pass


mohammad's avatar
mohammad committed
132
133
134
135
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
136

Lawrence McAfee's avatar
Lawrence McAfee committed
137
138
139
140
141
    @abstractmethod
    def gather_params(self):
        pass


142
143
    @abstractmethod
    def reload_model_params(self):
144
145
146
147
148
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
149
150
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151

mohammad's avatar
mohammad committed
152
153
154
155
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

mohammad's avatar
mohammad committed
162
163
164
165
166
167
168
169
170
171
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172

mohammad's avatar
mohammad committed
173
174
175
176
177
178
179
180
181
182
183
184
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


185
186
# class BaseFloat16Optimizer(MegatronOptimizer):
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
187
188

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
189
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
190
191
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
192

Lawrence McAfee's avatar
Lawrence McAfee committed
193
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194
            optimizer, clip_grad, log_num_zeros_in_grad,
195
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196

197
198
199
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
200
        self.bf16 = bf16
mohammad's avatar
mohammad committed
201
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
203
204
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
205
206
207

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209
210
211
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
212
213

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
214
215
216
217
218
219
220
221
222
223
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
224

Lawrence McAfee's avatar
Lawrence McAfee committed
225

226
227
228
229
    @abstractmethod
    def get_model_parallel_group(self, state_dict):
        pass

Lawrence McAfee's avatar
Lawrence McAfee committed
230
231
232
233
234
235
    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
236
237
238
239
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


240
    def _unscale_main_grads_and_check_for_nan(self, group):
Lawrence McAfee's avatar
Lawrence McAfee committed
241
242
243
244
245
246
247
248
249
250
251
252
253

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
254
        if args.use_# >>>
255
256
257
258
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
259
        torch.distributed.all_reduce(self.found_inf,
260
261
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
262
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
263
264
265
266
267
268

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
269
270
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    @classmethod
271
    def debug_base(cls, ITERATION, key, value):
Lawrence McAfee's avatar
Lawrence McAfee committed
272
273
274
275
276
277
278
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
279
                print("            + br/%s; [r%d, i%d]; %s, %.12e" % ("fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
Lawrence McAfee's avatar
Lawrence McAfee committed
280
281
282
283
284
285
286
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)
287
288
    def debug_model(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
289
        tensors = [
290
            (p.main_grad.float() if use_grad else p.float())
291
292
293
            for m in self.models for p in m.parameters()
        ]
        count = sum(t.nelement() for t in tensors)
294
        return self.debug_base(
295
296
            ITERATION,
            "model/%s, %s [count %d]" % (
297
                "grad" if use_grad else "param",
298
299
300
                key,
                count,
            ),
301
302
            # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
            sum(torch.sum(torch.abs(t)) for t in tensors),
303
        )
304
305
306
307
308
309
310
311
312
    def debug_main(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
        tensors = [
            p.grad if use_grad else p
            for g in self.optimizer.param_groups
            for p in g["params"]
        ]
        tensors = [ t.float() for t in tensors ]
        count = sum(t.nelement() for t in tensors)
313
        return self.debug_base(
Lawrence McAfee's avatar
Lawrence McAfee committed
314
            ITERATION,
315
316
317
318
319
320
            "main/%s, %s [count %d]" % (
                "grad" if use_grad else "param",
                key,
                count,
            ),
            sum(torch.sum(torch.abs(t)) for t in tensors),
Lawrence McAfee's avatar
Lawrence McAfee committed
321
322
        )
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
323
324

    @torch.no_grad()
325
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
326
327
328

        timers = get_timers()

329
330
331
        # >>>
        # self.debug_model_param(ITERATION, "before copy grad.")
        # self.debug_model_grad(ITERATION, "before copy grad.")
332
333
        # self.debug_main_param(ITERATION, "before copy grad.")
        # self.debug_main_grad(ITERATION, "before copy grad.")
334
335
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
338
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
339
340
        timers('optimizer-copy-to-main-grad').stop()

341
        # >>>
342
343
        # self.debug_model(ITERATION, "after copy grad.", 0)
        # self.debug_main(ITERATION, "after copy grad.", 1)
344
345
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
361
362
363
364
365
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
366
367
368
369
370
371
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
372
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
373
374
375
376
377
378
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

379
380
381
382
383
384
385
386
387
388
389
390
        # >>>
        # param = self.optimizer.param_groups[0]["params"][0]
        # pax(0, {
        #     "param" : tp(param),
        #     "grad" : tp(param.grad),
        # })
        # <<<

        # >>>
        # self.debug_main(ITERATION, "before step.", 0)
        # <<<

391
392
393
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
394
        # >>>
395
        # self.debug_main(ITERATION, "after step.", 0)
Lawrence McAfee's avatar
Lawrence McAfee committed
396
397
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
398
399
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
400
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
401
402
        timers('optimizer-copy-main-to-model-params').stop()

403
        # >>>
404
405
        # self.debug_main_param(ITERATION, "after copy param.")
        # self.debug_main_grad(ITERATION, "after copy param.")
406
407
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
408
409
410
411
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
440
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
441
442
443
444

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
445
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
446

mohammad's avatar
mohammad committed
447
        # ======================
448
        # main parameter stuff
mohammad's avatar
mohammad committed
449
450
451
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
452
453
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
454
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
455
456
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
457
458
459
460
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
461
            float16_params_this_group = []
mohammad's avatar
mohammad committed
462
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
464
465
466
467
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
468
469
470
471
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
472
                        # Create a copy
473
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
474
                        # Copy tensor model parallel attributes.
475
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
476
                                                                  param)
477
                        if hasattr(param, 'shared'):
478
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
479
                        # Replace the optimizer params with the new fp32 copy.
480
                        param_group['params'][i] = main_param
481

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
482
                        fp32_from_float16_params_this_group.append(main_param)
483
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
484
                        if param in self.optimizer.state:
485
486
487
                            # >>>
                            raise Exception("hi.")
                            # <<<
488
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
489
490
491
492
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
493
494
495
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
496
497
498
499
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
500
501
502
503
504
505
506
507
508
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
509
510
511
512
513
514
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
515
516
517
518
519
520
521
522
523
524
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
525

526
527
528
529
    def get_model_parallel_group(self):
        return mpu.get_model_parallel_group())


mohammad's avatar
mohammad committed
530
531
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
532
533
534
535
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
537
            _zero_grad_group_helper(group, set_to_none)
538
539
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
540
541
542
543
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


544
    # >>>
545
    def reduce_grads(self, model):
546
547
548
549
550
551
552
553
554
555
556
557
558

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
574
            # >>>
575
            # raise Exception("[main] ready for weight sync?")
576
            # <<<
577
578
579
580
581
582
583
584
585
586
587
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
588
589
590
591
592
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
593
594
595
596
597
598
599

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
600
601
602
            # >>>
            raise Exception("[main] ready for t5 sync?")
            # <<<
603
604
605
606
607
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
608
609
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
610
611
        timers('backward-embedding-all-reduce').stop()

612
    def gather_params(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
613
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
614

615
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
616
617
618
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
619
            for model_param, main_param in zip(model_group, main_group):
620
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
621
622
623
624
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
625
626
627
628
629

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
630
                if self.params_have_main_grad and \
631
                   not self.use_contiguous_buffers_in_local_ddp:
632
633
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
634
635
636
637
638
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
639

640
641
642
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
643
                    if not self.use_contiguous_buffers_in_local_ddp:
644
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
645

646
647
648
649
650
651
652
653
654
655
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
656
657
    def _collect_main_grad_data_for_unscaling(self):

658
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
659
660

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
661
        for main_group in self.fp32_from_float16_groups:
662
663
664
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
665

mohammad's avatar
mohammad committed
666
        # Append fp32 parameters.
667
668
669
670
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
671
672
        
        return main_grads
mohammad's avatar
mohammad committed
673
674


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
675
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
676
        model_data = []
677
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
678
679
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
680
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
681
                model_data.append(model_param.data)
682
683
                main_data.append(main_param.data)
        return model_data, main_data
684
685


686
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
689
690
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
691
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
692
693
694
695
696
697
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : [p for m in self.models for p in m.parameters()],
        #     })
698
        # <<<
699
700
701


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
702
703
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
704
705
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
706
707


mohammad's avatar
mohammad committed
708
709
710
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
711
712
713
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
714
715
716
717
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
718
719
720
721
722
723
724
725
726
727
728
729
730
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
731
732
733
734
735
736
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
737

738
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
739
740
741
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
742
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
743
744
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
745
746
747
748
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
749
750
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
751
752
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
753
                 params_have_main_grad,
754
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
755
756
757

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
758
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
777
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
778

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
779
780
781
782
783
784
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

785
786
787
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
788
                    if not self.use_contiguous_buffers_in_local_ddp:
789
790
                        param.main_grad = None

mohammad's avatar
mohammad committed
791
        # Clip gradients.
792
        grad_norm = None
mohammad's avatar
mohammad committed
793
        if self.clip_grad > 0.0:
794
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
795

Rewon Child's avatar
Rewon Child committed
796
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
797
798
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
799

mohammad's avatar
mohammad committed
800
801
802
803
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
804
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
805
806


807
808
809
810
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
811
812
813
814
815
816
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)