optimizer.py 54.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34
35

DEBUG_ITERATION = 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Rewon Child's avatar
Rewon Child committed
101
102
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
Lawrence McAfee's avatar
Lawrence McAfee committed
103
104
105
106
107
108
109
        # >>>
        # pax(0, {
        #     "clip_grad" : clip_grad,
        #     "params": [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ p.grad for p in params ],
        # })
        # <<<
110
        return clip_grad_norm_fp32(params, clip_grad)
111

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
112

Rewon Child's avatar
Rewon Child committed
113
114
115
116
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
117

mohammad's avatar
mohammad committed
118
119
120
121
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122

mohammad's avatar
mohammad committed
123
124
    @abstractmethod
    def get_loss_scale(self):
125
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
126
127
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128

mohammad's avatar
mohammad committed
129
130
131
132
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
133

Lawrence McAfee's avatar
Lawrence McAfee committed
134
    @abstractmethod
135
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
136
137
138
        pass


mohammad's avatar
mohammad committed
139
140
141
142
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143

Lawrence McAfee's avatar
Lawrence McAfee committed
144
145
146
147
148
    @abstractmethod
    def gather_params(self):
        pass


149
150
    @abstractmethod
    def reload_model_params(self):
151
152
153
154
155
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
156
157
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158

mohammad's avatar
mohammad committed
159
160
161
162
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163

mohammad's avatar
mohammad committed
164
165
166
167
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168

mohammad's avatar
mohammad committed
169
170
171
172
173
174
175
176
177
178
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
179

mohammad's avatar
mohammad committed
180
181
182
183
184
185
186
187
188
189
190
191
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
192
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
193
194

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
195
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
196
197
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

Lawrence McAfee's avatar
Lawrence McAfee committed
199
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
200
            optimizer, clip_grad, log_num_zeros_in_grad,
201
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202

203
204
205
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
        self.bf16 = bf16
mohammad's avatar
mohammad committed
207
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209
210
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
211
212
213

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
214
215
216
217
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
218
219

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
220
221
222
223
224
225
226
227
228
229
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
230

Lawrence McAfee's avatar
Lawrence McAfee committed
231
232
233
234
235
236
237

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
256
257
258
259
260
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
261
        torch.distributed.all_reduce(self.found_inf,
262
263
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
264
265
266
267
268
269
270
271

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag


    @torch.no_grad()
272
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
273
274
275
276
277

        timers = get_timers()

        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
278
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
279
280
        timers('optimizer-copy-to-main-grad').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
281
282
283
284
285
        # pax(0, {
        #     "params" : self.get_parameters(), # self.main_param_shards,
        #     "grads" : [ p.grad for p in self.get_parameters() ], # self.main_param_shards ],
        # })

Lawrence McAfee's avatar
Lawrence McAfee committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
301
302
303
304
305
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

        # Step the optimizer.
        self.optimizer.step()

        # >>>
        # pax(0, {
324
325
        #     "main params" : self.get_main_params(),
        #     "main grads" : self.get_main_grads(),
Lawrence McAfee's avatar
Lawrence McAfee committed
326
327
328
329
330
        # })
        # <<<

        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
331
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
332
333
        timers('optimizer-copy-main-to-model-params').stop()

334
335
336
337
338
339
340
        # >>>
        # pax(1, {
        #     "ITERATION" : ITERATION,
        #     "model_params" : [ p for m in self.models for p in m.parameters() ],
        # })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
341
342
343
344
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
373
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
374
375
376
377

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
378
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
379

mohammad's avatar
mohammad committed
380
        # ======================
381
        # main parameter stuff
mohammad's avatar
mohammad committed
382
383
384
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
386
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
387
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
388
389
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
390
391
392
393
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
394
            float16_params_this_group = []
mohammad's avatar
mohammad committed
395
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
396
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
397
398
399
400
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
401
402
403
404
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
405
                        # Create a copy
406
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
407
                        # Copy tensor model parallel attributes.
408
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
409
                                                                  param)
410
                        if hasattr(param, 'shared'):
411
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
412
                        # Replace the optimizer params with the new fp32 copy.
413
                        param_group['params'][i] = main_param
414

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
415
                        fp32_from_float16_params_this_group.append(main_param)
416
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
417
                        if param in self.optimizer.state:
418
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
419
420
421
422
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
423
424
425
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
426
427
428
429
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
430
431
432
433
434
435
436
437
438
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
439
440
441
442
443
444
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
445
446
447
448
449
450
451
452
453
454
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
455
456
457

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
458
459
460
461
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
462
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
463
            _zero_grad_group_helper(group, set_to_none)
464
465
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
466
467
468
469
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


470
    # >>>
471
    def reduce_grads(self, model):
472
473
474
475
476
477
478
479
480
481
482
483
484

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
512
513
514
515
516
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
517
                # +++
518
519
520
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
521
522
523
524
525
526
527
528
529
530
531
532
533
534
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
535
536
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
537
            # +++
538
539
540
541
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
542
543
544
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
545
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
546
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
547

548
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
549
550
551
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
552
            for model_param, main_param in zip(model_group, main_group):
553
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
554
555
556
557
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
558
559
560
561
562

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
563
                if self.params_have_main_grad and \
564
                   not self.use_contiguous_buffers_in_local_ddp:
565
566
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
567
568
569
570
571
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
572

573
574
575
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
576
                    if not self.use_contiguous_buffers_in_local_ddp:
577
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
578

Lawrence McAfee's avatar
Lawrence McAfee committed
579
580
    def _collect_main_grad_data_for_unscaling(self):

581
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
582
583

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
584
        for main_group in self.fp32_from_float16_groups:
585
586
587
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
588
589
590

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
591
        # Append fp32 parameters.
592
593
594
595
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
596
597
598
599
600
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
601

Lawrence McAfee's avatar
Lawrence McAfee committed
602
        return main_grads
mohammad's avatar
mohammad committed
603
604


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
605
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
606
        model_data = []
607
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
609
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
610
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
611
                model_data.append(model_param.data)
612
613
                main_data.append(main_param.data)
        return model_data, main_data
614
615


616
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
617
618
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
619
620
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
621
622
623
624
625
626
627
628
        # >>>
        if ITERATION == DEBUG_ITERATION:
            pax(0, {
                "** branch **" : "** main. **",
                "ITERATION" : ITERATION,
                "model params" : [p for m in self.models for p in m.parameters() ],
            })
        # <<<
629
630
631


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
632
633
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
634
635
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
636
637


mohammad's avatar
mohammad committed
638
639
640
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
641
642
643
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
644
645
646
647
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
648
649
650
651
652
653
654
655
656
657
658
659
660
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
661
662
663
664
665
666
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
667

668
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
669
670
671
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
672
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
673
674
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
675
676
677
678
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


679
# >>>
680
import math
681

682
from megatron import get_args
683

Lawrence McAfee's avatar
Lawrence McAfee committed
684
685
686
687
688
689
690
691
692
693
694
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

695
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
696
697
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
698

699
    # >>>
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
731
732
    # <<<

733
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
734
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
735

Lawrence McAfee's avatar
Lawrence McAfee committed
736
737
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
738
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
739
        for param, param_world_indexes in param_world_index_map.items():
740

Lawrence McAfee's avatar
Lawrence McAfee committed
741
742
743
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
744
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
745
746
747
748
749
750
751
752
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
Lawrence McAfee's avatar
Lawrence McAfee committed
753
754
755
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
756
757
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
758
                param_shard_map[param] = {
759
760
761
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
762
763
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
764
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
765
766
767
768

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
769
    def get_model_gbuf_shard(cls, model, dtype):
770

Lawrence McAfee's avatar
Lawrence McAfee committed
771
772
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
773
774

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
775
776
777
778
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

779
780
781
782
783
784
785
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
786
787
788
789
790
791
792
793
794
795
796
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
797
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
798
            "param_map" : param_shard_map,
799
800
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
801
        # pax(1, {"data": data})
802

Lawrence McAfee's avatar
Lawrence McAfee committed
803
        return data
804
805

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
806
    def get_model_gbuf_shard_map(cls, model):
807
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
808
            dtype : cls.get_model_gbuf_shard(model, dtype)
809
810
811
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
812
813
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
814

Lawrence McAfee's avatar
Lawrence McAfee committed
815
816
817
818
819
820
821
822
823
824
825
826
827
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
828

Lawrence McAfee's avatar
Lawrence McAfee committed
829
830
831
832
833
834
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
835

Lawrence McAfee's avatar
Lawrence McAfee committed
836
        return param_gbuf_map
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
858
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
859
860
861
862
863
864
865
866

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

867
868
869
870
871
872
873
874
875
876
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

877
878
879
880
881
882
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
883
884
885
886
887
888
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
889
890
891

        return group_shards

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

933
934
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
935
                 bf16, grad_scaler, models):
936
937
938

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
939
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
940
            bf16, grad_scaler, models)
941

942
943
        # >>>
        args = get_args()
944
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
945
        # <<<
946

Lawrence McAfee's avatar
Lawrence McAfee committed
947
948
949
950
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
951

952
953
954
955
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
956
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
957

958
959
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

960
961
962
963
964
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

965
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
966

967
968
969
970
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
971

972
        # >>>
973
974
975
976
977
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
978
979
        # <<<

980
981
982
983
984
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
985
986
        self.optimizer.load_state_dict(self.optimizer.state_dict())

987
988
989
990
991
992
993
        # pax(1, {
        #     "opt_group_shards" : self.opt_group_shards,
        #     "param_groups" : self.optimizer.param_groups,
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()
994

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
1036
    def get_main_param(self, group_index):
1037
1038
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
1039
1040
1041
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

1042
1043
1044
1045
1046
1047
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1048
1049
1050

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1051
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1052
1053
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1054
1055
1056
1057
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1058

1059
1060
        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
Lawrence McAfee's avatar
Lawrence McAfee committed
1061
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1062

1063
        # pax(0, {"model_params": model_params})
1064

1065
1066
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1067
        # >>>
1068
1069
1070
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1071
        # <<<
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]

                gbuf = model._grad_buffers[dtype]
                gbuf_views = []
                for shard in world_shards:
                    gbuf_views.append(gbuf.data[shard.start:shard.end])

                gbuf_view_items.append((model_index, dtype, gbuf_views))

        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1090
    def reduce_grads(self, model):
1091

Lawrence McAfee's avatar
Lawrence McAfee committed
1092
1093
1094
1095
1096
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<


Lawrence McAfee's avatar
Lawrence McAfee committed
1128
1129
1130
1131
1132
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1133
1134
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1135
1136
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1137

1138
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1139

1140
1141
1142
1143
1144
1145
1146
1147
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            
        # pax(0, {"gbuf_view_items": gbuf_view_items})
Lawrence McAfee's avatar
Lawrence McAfee committed
1148

1149
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1150

1151
1152
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1153

1154
1155
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1156
        # All-gather updated main params.
1157
1158
1159
1160
1161
1162
1163
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

Lawrence McAfee's avatar
Lawrence McAfee committed
1164
1165
        # Each model param now contains its updated values in it's
        # '.main_grad' field.
1166
1167
1168
1169
1170
1171
1172
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
            # pax(0, {
            #     "param" : tp(param),
            #     "main_grad" : tp(param.main_grad),
            #     # "grad" : tp(param.grad),
            # })
1173

1174
1175
1176
1177
1178
1179
1180
        # pax(1, {
        #     "data_parallel_rank" : data_parallel_rank,
        #     "main params" : self.get_main_params(),
        #     "model params / world" : self.get_world_model_params(),
        #     **{"gbuf_view_items / %d"%i:v[2] for i,v in enumerate(gbuf_view_items)},
        #     # "gbuf_view_item" : tp(gbuf_view[data_parallel_rank]),
        #     # "model params / local" : self.get_local_model_param_views(),
1181
        # })
1182

Lawrence McAfee's avatar
Lawrence McAfee committed
1183
    def _collect_main_grad_data_for_unscaling(self):
1184
        return [ g.data for g in self.get_main_grads() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1185

1186
1187
1188
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1189
            main_param = self.get_main_param(group_index)
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1201
1202
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
                # try:
1203
                main_view.detach().copy_(model_view)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
                # except:
                #     pax({
                #         "main_param" : tp(main_param),
                #         "model_param" : tp(model_param),
                #         "main_view" : tp(main_view),
                #         "model_view" : tp(model_view),
                #         "main_shard" : str(main_shard),
                #         "model_shard" : str(model_shard),
                #     })

1214
        # pax(0, {
1215
1216
1217
1218
        #     **{
        #         "opt_group_shards / %d" % i : s
        #         for i, s in enumerate(self.opt_group_shards)
        #     },
1219
        #     "main_params" : self.get_main_params(),
1220
        # })
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    def _copy_model_grads_to_main_grads(self, ITERATION):

        # >>>
        model_grads = self.get_local_model_grad_views()
        model_has_nan = self.has_nan_debug(model_grads)
        if model_has_nan:
            pax(1, {
                "ITERATION" : ITERATION,
                "model grads" : model_grads,
                "model_has_nan" : model_has_nan,
                "model params / local" : self.get_local_model_param_views(),
                # "model params / world" : [ list(self.param_gbuf_map),
                # "main grads" : self.get_main_grads(),
            })
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1237
1238

        for group_index, group_shard in enumerate(self.opt_group_shards):
1239
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1240

1241
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1242
                model_shard = self.model_gbuf_shards \
1243
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1244
1245
1246

                assert main_shard.size == model_shard.size

Lawrence McAfee's avatar
Lawrence McAfee committed
1247
                # Copy from DDP's contiguous buffer to main shard's grad.
1248
                model_grad = self.models[model_index]._grad_buffers[dtype].data
1249
                main_grad = self.get_main_grad(group_index)
Lawrence McAfee's avatar
Lawrence McAfee committed
1250

Lawrence McAfee's avatar
Lawrence McAfee committed
1251
                # Copy sub-range within tensor.
1252
1253
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1254

1255
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1271
        # >>>
1272
1273
1274
1275
1276
1277
1278
        # pax(1, {
        #     # "model_gbuf_shards" : self.model_gbuf_shards,
        #     **{
        #         "opt_group_shards / %d" % i : s
        #         for i, s in enumerate(self.opt_group_shards)
        #     },
        #     "main_grads" : self.get_main_grads(),
Lawrence McAfee's avatar
Lawrence McAfee committed
1279
        # })
1280
1281
        # for group_index, main_grad in enumerate(self.get_main_grads()):
        #     # is_nan = torch.any(torch.isnan(main_grad)).item()
1282
        #     if is_nan:
1283
1284
1285
1286
        #         # opt_group_shard = self.opt_group_shards[group_index]
        #         # param_views = []
        #         # for param, shard in opt_group_shard["param_map"].items():
        #         #     ddd
1287
        #         pax(0, {
1288
1289
1290
1291
1292
1293
        #             "opt_group_shard" : self.opt_group_shards[group_index],
        #             "param_map" : [ (str(p.shape), str(d)) for p, d in self.opt_group_shards[group_index]["param_map"].items() ],
        #             "gbufs" : [ b.data for m in self.models for d, b in m._grad_buffers.items() ],
        #             "group_index" : group_index,
        #             "main_param" : tp(self.get_main_param(group_index)),
        #             "main_grad" : tp(main_grad),
1294
1295
        #             "is_nan" : is_nan,
        #         })
1296
1297
1298
1299
1300
1301
1302
1303
        main_grads = self.get_main_grads()
        main_has_nan = self.has_nan_debug(main_grads)
        if main_has_nan:
            raise Exception("hi.")

        # pax(1, {
        #     "model grads" : self.get_local_model_grad_views(),
        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
1304
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1305

1306

1307
    def _copy_main_params_to_model_params(self, ITERATION):
1308
1309

        for group_index, group_shard in enumerate(self.opt_group_shards):
1310
            for model_param, main_shard in group_shard["param_map"].items():
1311

1312
                model_index, dtype = self.param_gbuf_map[model_param]
1313
                model_shard = self.model_gbuf_shards \
1314
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1315
1316
1317
1318

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1319
                model_param = self.models[model_index]._grad_buffers[dtype].data
1320
                main_param = self.get_main_param(group_index)
1321
1322

                # Copy sub-range within tensor.
1323
1324
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1325
1326
1327
1328

                model_view.detach().copy_(main_view)

                # Debug.
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })
1342
1343
1344
1345
1346

        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
1347
1348
        # >>>
        for param in self.param_gbuf_map:
1349
1350
            # is_nan = torch.any(torch.isnan(param)).item()
            is_nan = not torch.all(torch.isfinite(param)).item()
Lawrence McAfee's avatar
Lawrence McAfee committed
1351
            if is_nan:
1352
                pax({
Lawrence McAfee's avatar
Lawrence McAfee committed
1353
1354
1355
                    "param" : tp(param),
                    "is_nan" : is_nan,
                })
1356

1357
1358
1359
1360
1361
1362
1363
1364
        if ITERATION == DEBUG_ITERATION:
            pax(0, {
                "** branch **" : "** fix. **",
                "ITERATION" : ITERATION,
                # "main params" : self.get_main_params(),
                # "model params / local" : self.get_local_model_param_views(),
                "model params" : [p for m in self.models for p in m.parameters()],
            })
Lawrence McAfee's avatar
Lawrence McAfee committed
1365
        # <<<
1366

1367
1368
# <<<

mohammad's avatar
mohammad committed
1369

mohammad's avatar
mohammad committed
1370
1371
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1372
1373
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1374
                 params_have_main_grad,
1375
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1376
1377
1378

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1379
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1398
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1399

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1400
1401
1402
1403
1404
1405
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1406
1407
1408
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1409
                    if not self.use_contiguous_buffers_in_local_ddp:
1410
1411
                        param.main_grad = None

mohammad's avatar
mohammad committed
1412
        # Clip gradients.
1413
        grad_norm = None
mohammad's avatar
mohammad committed
1414
        if self.clip_grad > 0.0:
1415
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1416

Rewon Child's avatar
Rewon Child committed
1417
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1418
1419
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1420

mohammad's avatar
mohammad committed
1421
1422
1423
1424
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1425
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1426
1427


1428
1429
1430
1431
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1432
1433
1434
1435
1436
1437
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)