optimizer.py 27.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


48
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
49
50
51
52
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
53
54
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
59
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
60
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

64

mohammad's avatar
mohammad committed
65
66
67

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
68
69
70

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
71
                 params_have_main_grad,
72
                 use_contiguous_buffers_in_local_ddp):
73

mohammad's avatar
mohammad committed
74
75
76
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
77
78
79
80
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
81
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82

83
        if self.use_contiguous_buffers_in_local_ddp:
84
85
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
86

Rewon Child's avatar
Rewon Child committed
87
    def get_parameters(self):
88
89
90
91
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
92
93
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
94

Rewon Child's avatar
Rewon Child committed
95
96
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
97
        return clip_grad_norm_fp32(params, clip_grad)
98

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
99

Rewon Child's avatar
Rewon Child committed
100
101
102
103
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
104

mohammad's avatar
mohammad committed
105
106
107
108
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
109

mohammad's avatar
mohammad committed
110
111
    @abstractmethod
    def get_loss_scale(self):
112
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
113
114
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
115

mohammad's avatar
mohammad committed
116
117
118
119
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
120

mohammad's avatar
mohammad committed
121
122
123
124
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
125

126
127
    @abstractmethod
    def reload_model_params(self):
128
129
130
131
132
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
133
134
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
135

mohammad's avatar
mohammad committed
136
137
138
139
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
140

mohammad's avatar
mohammad committed
141
142
143
144
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145

mohammad's avatar
mohammad committed
146
147
148
149
150
151
152
153
154
155
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
161
162
163
164
165
166
167
168
169
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
170
171
172
173
174
175
176
177
178
179
180
181
class Float16OptimizerWithFloat16Params(MegatronOptimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
182
            for the DDP cases where there is a continuous buffer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
183
184
185
186
187
188
189
190
191
192
193
194
195
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
196
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
197
                 bf16, grad_scaler):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198
199
200

        super(Float16OptimizerWithFloat16Params, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
201
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
203

        self.bf16 = bf16
mohammad's avatar
mohammad committed
204
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
205
206
207
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
208
209
210

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
211
212
213
214
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
215
216

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
217
218
219
220
221
222
223
224
225
226
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
227
228

        # ======================
229
        # main parameter stuff
mohammad's avatar
mohammad committed
230
231
232
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
233
234
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
235
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
236
237
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
238
239
240
241
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
242
            float16_params_this_group = []
mohammad's avatar
mohammad committed
243
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
244
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
245
246
247
248
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
249
250
251
252
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
253
                        # Create a copy
254
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
255
                        # Copy tensor model parallel attributes.
256
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
257
                                                                  param)
258
                        if hasattr(param, 'shared'):
259
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
260
                        # Replace the optimizer params with the new fp32 copy.
261
                        param_group['params'][i] = main_param
Lawrence McAfee's avatar
Lawrence McAfee committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                        # >>>
                        def debug():
                            from lutil import pax, tp
                            pax(0, {
                                "optimizer" : optimizer,
                                # "optimizer / state" : optimizer.state,
                                "optimizer / pg / 0" : optimizer.param_groups[0]["params"],
                                "optimizer / pg / 1" : optimizer.param_groups[1]["params"],
                                "param" : tp(param),
                                "param / hash" : hash(param),
                                "main_param" : tp(main_param),
                                "main_param / hash" : hash(main_param),
                            })
                        # <<<
                        # >>>
                        # debug()
278
279
280
281
282
283

                        # from lutil import pax, tp
                        # pax(0, {
                        #     "param" : tp(param),
                        #     "main_param" : tp(main_param),
                        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
284
                        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
                        fp32_from_float16_params_this_group.append(main_param)
286
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
287
                        if param in self.optimizer.state:
288
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
289
                                = self.optimizer.state.pop(param)
Lawrence McAfee's avatar
Lawrence McAfee committed
290
291
292
                        # >>>
                        # debug()
                        # <<<
mohammad's avatar
mohammad committed
293
294
295

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
296
297
298
299
                        # >>>
                        from lutil import pax
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
300
301
302
303
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
304
305
306
307
308
309
310
311
312
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
313
314
315
316
317
318
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        # >>>
        # from lutil import pax
        # pax(0, {
        #     # "float16_groups / len" : [ len(g) for g in self.float16_groups ],
        #     # "fp32_from_float16_groups / len" :
        #     # [ len(g) for g in self.fp32_from_float16_groups ],
        #     # "float16_groups / 0" : self.float16_groups[0],
        #     # "float16_groups / 1" : self.float16_groups[1],
        #     # "fp32_from_float16_groups / 0" : self.fp32_from_float16_groups[0],
        #     # "fp32_from_float16_groups / 1" : self.fp32_from_float16_groups[1],
        #     # "fp32_from_float32_groups" : self.fp32_from_fp32_groups,
        #     "optimizer" : self.optimizer,
        #     # "optimizer / sd" : self.optimizer.state_dict(),
        #     # "optimizer / state" : self.optimizer.state_dict()["state"],
        #     # "optimizer / pg" : self.optimizer.state_dict()["param_groups"],
        #     # "optimizer / pg / 0" : self.optimizer.state_dict()["param_groups"][0],
        #     # "optimizer / pg / 1" : self.optimizer.state_dict()["param_groups"][1],
        #     "optimizer -> pg" : optimizer.param_groups,
        #     "optimizer -> pg / 0" : optimizer.param_groups[0]["params"],
        #     "optimizer -> pg / 1" : optimizer.param_groups[1]["params"],
        # })
        # <<<

mohammad's avatar
mohammad committed
342
343
344

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
345
346
347
348
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
349
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
350
            _zero_grad_group_helper(group, set_to_none)
351
352
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
353
354
355
356
357
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
358
359
        if self.grad_scaler is None:
            return self._scale_one
mohammad's avatar
mohammad committed
360
361
362
        return self.grad_scaler.scale


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    # >>>
    def reduce_gradientss(self):

        # >>>
        # if not args.use_distributed_optimizer:

        # All-reduce if needed.
        # >>>
        # if args.DDP_impl == 'local' and not args.use_distributed_optimizer:
        if args.DDP_impl == 'local':
        # <<<
            timers('backward-params-all-reduce').start()
            for model_module in model:
                # >>>
                # from lutil import pax, tp
                # pax(0, {
                #     "model" : model,
                #     "model_module" : model_module,
                # })
                # <<<
                # >>>
                # e.g., grad_shard = optimizer.get_grad_shard()
                # <<<
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                # if args.DDP_impl == 'local':
                #     grad = word_embeddings_weight.main_grad
                # else:
                #     grad = word_embeddings_weight.grad
                # torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                grad_shard = optimizer.get_grad_shard(word_embeddings)
                torch.distributed.all_reduce(grad_shard,
                                             group=mpu.get_embedding_group())
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
            # grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            # torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
            # +++
            grad_shard = optimizer.get_grad_shard(
                unwrapped_model.language_model.embedding.position_embeddings.weight)
            torch.distributed.all_reduce(grad_shard,
                                         group=mpu.get_position_embedding_group())
            # <<<
        timers('backward-embedding-all-reduce').stop()

441
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
442
443
444
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
445
            for model_param, main_param in zip(model_group, main_group):
446
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
447
448
449
450
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
451
452
453
454
455

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
456
                if self.params_have_main_grad and \
457
                   not self.use_contiguous_buffers_in_local_ddp:
458
459
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
460
461
462
463
464
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
465

466
467
468
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
469
                    if not self.use_contiguous_buffers_in_local_ddp:
470
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
471

472
473
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
474
475
        # fp32 params fromm float16 ones.
        for main_group in self.fp32_from_float16_groups:
476
477
478
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
479
        # Append fp32 parameters.
480
481
482
483
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
484
485
486
487
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
488
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
489
490
491
492
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
493
494
495
496
497
498

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
500
        model_data = []
501
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
503
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
504
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
505
                model_data.append(model_param.data)
506
507
                main_data.append(main_param.data)
        return model_data, main_data
508
509


510
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
511
512
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
513
514
515
516
517
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
519
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
520
521
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
522
523
524


    def reload_model_params(self):
525
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
526

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527

mohammad's avatar
mohammad committed
528
529
530
531
532
    @torch.no_grad()
    def step(self):

        timers = get_timers()

533
534
535
536
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
537

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
538
539
540
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:
mohammad's avatar
mohammad committed
541

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
543
544
545
            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
546

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
547
548
549
550
551
552
553
            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None
mohammad's avatar
mohammad committed
554

555
556
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
557
558
559
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
560
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
561

Rewon Child's avatar
Rewon Child committed
562
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
563
564
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
565

mohammad's avatar
mohammad committed
566
567
568
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
569
570
571
572
573
574
575
576
577
578
        # >>>
        # from lutil import pax, tp
        # pax(0, {
        #     "optimizer / state" :
        #     { hash(k):tp(v) for k,v in self.optimizer.state.items() },
        #     "optimizer / state / len" : len(self.optimizer.state),
        #     "optimizer / state / 0" : list(self.optimizer.state.values())[0],
        # })
        # <<<

579
580
581
582
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
583

mohammad's avatar
mohammad committed
584
        # Successful update.
585
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
586
587


mohammad's avatar
mohammad committed
588
589
590
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
591
592
593
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
594
595
596
597
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
598
599
600
601
602
603
604
605
606
607
608
609
610
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
612
613
614
615
616
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
617

618
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
619
620
621
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
622
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
623
624
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
625
626
627
628
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


629
630
631
632
633
634
635
636
637
# >>>
class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):

    def step(self):

        raise Exception("hi.")

# <<<

mohammad's avatar
mohammad committed
638

mohammad's avatar
mohammad committed
639
640
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
641
642
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
643
                 params_have_main_grad,
644
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
645
646
647

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
648
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
667
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
668

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
669
670
671
672
673
674
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

675
676
677
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
678
                    if not self.use_contiguous_buffers_in_local_ddp:
679
680
                        param.main_grad = None

mohammad's avatar
mohammad committed
681
        # Clip gradients.
682
        grad_norm = None
mohammad's avatar
mohammad committed
683
        if self.clip_grad > 0.0:
684
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
685

Rewon Child's avatar
Rewon Child committed
686
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
689

mohammad's avatar
mohammad committed
690
691
692
693
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
694
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
695
696


697
698
699
700
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
701
702
703
704
705
706
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)