optimizer.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
30
from megatron import print_rank_0

from .clip_grads import clip_grad_norm_fp32
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()



class MegatronOptimizer(ABC):

    def __init__(self, optimizer):
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'

56
57
58
59
60
    def clip_grad_norm(self, clip_grad):
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
mohammad's avatar
mohammad committed
61
        clip_grad_norm_fp32(params, clip_grad)
62

mohammad's avatar
mohammad committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

    @abstractmethod
    def get_loss_scale(self):
        pass

    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

    @abstractmethod
    def step(self):
        pass

79
80
81
82
    @abstractmethod
    def reload_model_params(self):
        pass

mohammad's avatar
mohammad committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



class FP16OptimizerWithFP16Params(MegatronOptimizer):

    def __init__(self, optimizer, grad_scaler, clip_grad):
        super(FP16OptimizerWithFP16Params, self).__init__(optimizer)

        self.grad_scaler = grad_scaler
        self.clip_grad = clip_grad

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
        self.found_inf = torch.cuda.FloatTensor([0.0])

        # Dummy tensor needed for apex multi-apply tensor.
        self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # ======================
        # master parameter stuff
        # ======================

        # Three groups of parameters:
        #   fp16_groups: original fp16 parameters
        #   fp32_from_fp16_groups: fp32 copy of fp16 parameters
        #   fp32_from_fp32_groups: original fp32 parameters
        self.fp16_groups = []
        self.fp32_from_fp16_groups = []
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
            fp16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_fp16_params_this_group = []
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

                    # fp16 params:
                    if param.type() == 'torch.cuda.HalfTensor':
                        fp16_params_this_group.append(param)
                        # Create a copy
                        master_param = param.detach().clone().float()
                        # Store grads
                        master_param.requires_grad = True
                        # Copy tensor model parallel attributes.
mohammad's avatar
mohammad committed
158
159
                        mpu.copy_tensor_model_parallel_attributes(master_param,
                                                                  param)
160
161
                        if hasattr(param, 'shared'):
                            master_param.shared = param.shared
mohammad's avatar
mohammad committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                        # Replace the optimizer params with the new fp32 copy.
                        param_group['params'][i] = master_param
                        fp32_from_fp16_params_this_group.append(master_param)
                        # Reset existing state dict key to the new master param.
                        if param in self.optimizer.state:
                            self.optimizer.state[master_param] \
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
                        raise TypeError("Wrapped parameters must be either "
                                        "torch.cuda.FloatTensor or "
                                        "torch.cuda.HalfTensor. "
                                        "Received {}".format(param.type()))

            self.fp16_groups.append(fp16_params_this_group)
            self.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
                fp16_groups & fp32_from_fp32_groups."""
        for group in self.fp16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
        return self.grad_scaler.scale


mohammad's avatar
mohammad committed
203
    def _copy_model_grads_to_master_grads(self):
mohammad's avatar
mohammad committed
204
205
206
207
208
209
210
211
212
        # This only needs to be done for the fp16 group.
        model_grads = []
        master_grads = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                if model_param.grad is not None:
                    if master_param.grad is None:
                        master_param.grad = torch.empty_like(master_param)
mohammad's avatar
mohammad committed
213
214
                    model_grads.append(model_param.grad.data)
                    master_grads.append(master_param.grad.data)
mohammad's avatar
mohammad committed
215
216
217
218
219
220
221
222
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [model_grads, master_grads],
                             1.0)


mohammad's avatar
mohammad committed
223
224
225
226
227
228
229
    def _unscale_master_grads_and_check_for_nan(self):
        master_grads = []
        # fp32 params fromm fp16 ones.
        for master_group in self.fp32_from_fp16_groups:
            for master_param in master_group:
                if master_param.grad is not None:
                    master_grads.append(master_param.grad.data)
mohammad's avatar
mohammad committed
230
231
232
233
        # Append fp32 parameters.
        for master_group in self.fp32_from_fp32_groups:
            for master_param in master_group:
                if master_param.grad is not None:
mohammad's avatar
mohammad committed
234
                    master_grads.append(master_param.grad.data)
mohammad's avatar
mohammad committed
235
236
237
238
239
240
241
242
243
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            master_grads, self.found_inf, self.grad_scaler.inv_scale)
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
244
245
246
247
248
249

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


250
    def _get_model_and_master_params_data_fp16(self):
mohammad's avatar
mohammad committed
251
252
253
254
255
256
257
        model_data = []
        master_data = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                model_data.append(model_param.data)
                master_data.append(master_param.data)
258
259
260
261
262
263
        return model_data, master_data


    def _copy_master_params_to_model_params(self):
        # Only needed for the fp16 params.
        model_data, master_data = self._get_model_and_master_params_data_fp16()
mohammad's avatar
mohammad committed
264
265
266
267
268
269
270
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [master_data, model_data],
                             1.0)

271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def _copy_model_params_to_master_params(self):
        # Only needed for the fp16 params.
        model_data, master_data = self._get_model_and_master_params_data_fp16()
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [model_data, master_data],
                             1.0)


    def reload_model_params(self):
        self._copy_model_params_to_master_params()
                
mohammad's avatar
mohammad committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    @torch.no_grad()
    def step(self):

        timers = get_timers()

        # ==================================================
        # Copy gradients from model params to master params.
        # ==================================================
        timers('optimizer-copy-to-master-grad').start()
        self._copy_model_grads_to_master_grads()
        timers('optimizer-copy-to-master-grad').stop()

        # ==============================
        # Unscale and check for inf/nan.
        # ==============================
        timers('optimizer-unscale-and-check-inf').start()
        found_inf_flag = self._unscale_master_grads_and_check_for_nan()
mohammad's avatar
mohammad committed
303
        timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

        # ==================================
        # We are done with scaling gradients
        # so we can update the loss scale.
        # ==================================
        self.grad_scaler.update(found_inf_flag)

        # =====================================
        # If we found inf/nan, skip the update.
        # =====================================
        if found_inf_flag:
            return False

        # ==========================
        # Clip the master gradients.
        # ==========================
mohammad's avatar
mohammad committed
320
        timers('optimizer-clip-master-grad').start()
321
        self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
322
        timers('optimizer-clip-master-grad').stop()
mohammad's avatar
mohammad committed
323
324
325
326
327
328
329
330
331

        # ===================
        # Step the optimizer.
        # ===================
        self.optimizer.step()

        # =================================
        # Update params from master params.
        # =================================
mohammad's avatar
mohammad committed
332
        timers('optimizer-copy-master-to-model-params').start()
mohammad's avatar
mohammad committed
333
        self._copy_master_params_to_model_params()
mohammad's avatar
mohammad committed
334
        timers('optimizer-copy-master-to-model-params').stop()
mohammad's avatar
mohammad committed
335

mohammad's avatar
mohammad committed
336
337
338
        # ==================
        # Successful update.
        # ==================
mohammad's avatar
mohammad committed
339
        return True
mohammad's avatar
mohammad committed
340
341


mohammad's avatar
mohammad committed
342
343
344
345
346
347
348
349
350
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_fp16_groups
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            self.grad_scaler.load_state_dict(state_dict['grad_scaler'])

mohammad's avatar
mohammad committed
366
        # Copy data for the master params.
mohammad's avatar
mohammad committed
367
368
369
        fp32_from_fp16_params_key = 'fp32_from_fp16_params'
        if fp32_from_fp16_params_key not in state_dict:
            fp32_from_fp16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
370
371
        for current_group, saved_group in zip(
                self.fp32_from_fp16_groups,
mohammad's avatar
mohammad committed
372
                state_dict[fp32_from_fp16_params_key]):
mohammad's avatar
mohammad committed
373
374
375
376
377
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)



mohammad's avatar
mohammad committed
378
379
class FP32Optimizer(MegatronOptimizer):

mohammad's avatar
mohammad committed
380
    def __init__(self, optimizer, clip_grad):
mohammad's avatar
mohammad committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

        super(FP32Optimizer, self).__init__(optimizer)
        self.clip_grad = clip_grad
        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
401
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
402
403
404

        # Clip gradients.
        if self.clip_grad > 0.0:
405
            self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
406
407
408
409
410
411
412
413

        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
        return True


414
415
416
417
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
418
419
420
421
422
423
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)