"graphbolt/src/shared_memory_helper.cc" did not exist on "6f675eb7584fb078f6687b50085ee09859098e3c"
optimizer.py 12.9 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378


from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

from megatron import mpu
from megatron import get_args


def get_megatron_optimizer(optimizer):

    args = get_args()

    grad_scaler = DynamicGradScaler(
        initial_scale=2**32,
        min_scale=args.min_scale,
        growth_factor=2.0,
        backoff_factor=0.5,
        growth_interval=args.loss_scale_window,
        hysteresis=args.hysteresis)

    megatron_optimizer = FP16OptimizerWithFP16Params(
        optimizer, grad_scaler, args.clip_grad)

    return megatron_optimizer



class MegatronGradScaler(ABC):

    def __init__(self, initial_scale):
        """Initialize scale value with the input initial scale."""
        assert initial_scale > 0.0
        self._scale = torch.cuda.FloatTensor([initial_scale])

    @property
    def scale(self):
        return self._scale

    @property
    def inv_scale(self):
        return self._scale.double().reciprocal().float()

    @abstractmethod
    def update(self, found_inf):
        pass

    '''
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass
    '''


class ConstantGradScaler(MegatronGradScaler):
    pass


class DynamicGradScaler(MegatronGradScaler):

    def __init__(self, initial_scale, min_scale,
                 growth_factor, backoff_factor,
                 growth_interval, hysteresis):
        """"Grad scaler with dynamic scale that gets adjusted
        during training."""
        super(DynamicGradScaler, self).__init__(initial_scale)

        # Lower bound on the scale.
        assert min_scale > 0.0
        assert min_scale <= initial_scale
        self.min_scale = torch.cuda.FloatTensor([min_scale])
        # Growth and backoff factors for the scale.
        assert growth_factor > 1.0
        self.growth_factor = torch.cuda.FloatTensor([growth_factor])
        assert backoff_factor < 1.0
        assert backoff_factor > 0.0
        self.backoff_factor = torch.cuda.FloatTensor([backoff_factor])
        # Interval over which if we don't see any inf/nan,
        # we will scale the grad scale by the growth factor.
        assert growth_interval > 0
        self.growth_interval = growth_interval
        # Number of inf/nans we should see before scaling down
        # the grad scale by the backoff factor.
        assert hysteresis > 0
        self.hysteresis = hysteresis

        # Trackers.
        self._growth_tracker = 0
        self._hysteresis_tracker = self.hysteresis


    def update(self, found_inf):

        # If we have an inf/nan, growth tracker is set to 0
        # and hysterisis tracker is reduced by 1.
        if found_inf:
            self._growth_tracker = 0
            self._hysteresis_tracker -= 1
            # Now if we are our of hysteresis count, scale down the loss.
            if self._hysteresis_tracker <= 0:
                self._scale = torch.max(self._scale * self.backoff_factor,
                                        self.min_scale)
        else:
            # If there is no nan/inf, increment the growth tracker.
            self._growth_tracker += 1
            # If we have had enough consequitive intervals with no nan/inf:
            if self._growth_tracker == self.growth_interval:
                # Reset the tracker and hysteresis trackers,
                self._growth_tracker = 0
                self._hysteresis_tracker = self.hysteresis
                # and scale up the loss scale.
                self._scale = self._scale * self.growth_factor



def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()



class MegatronOptimizer(ABC):

    def __init__(self, optimizer):
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'

    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

    @abstractmethod
    def get_loss_scale(self):
        pass

    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

    @abstractmethod
    def step(self):
        pass

    '''
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass
    '''

    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



class FP16OptimizerWithFP16Params(MegatronOptimizer):


    def __init__(self, optimizer, grad_scaler, clip_grad):
        super(FP16OptimizerWithFP16Params, self).__init__(optimizer)

        self.grad_scaler = grad_scaler
        self.clip_grad = clip_grad

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
        self.found_inf = torch.cuda.FloatTensor([0.0])

        # Dummy tensor needed for apex multi-apply tensor.
        self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # ======================
        # master parameter stuff
        # ======================

        # Three groups of parameters:
        #   fp16_groups: original fp16 parameters
        #   fp32_from_fp16_groups: fp32 copy of fp16 parameters
        #   fp32_from_fp32_groups: original fp32 parameters
        self.fp16_groups = []
        self.fp32_from_fp16_groups = []
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
            fp16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_fp16_params_this_group = []
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

                    # fp16 params:
                    if param.type() == 'torch.cuda.HalfTensor':
                        fp16_params_this_group.append(param)
                        # Create a copy
                        master_param = param.detach().clone().float()
                        # Store grads
                        master_param.requires_grad = True
                        # Copy tensor model parallel attributes.
                        master_param.tensor_model_parallel = param.tensor_model_parallel
                        #mpu.copy_tensor_model_parallel_attributes(master_param,
                        #                                          param)
                        # Replace the optimizer params with the new fp32 copy.
                        param_group['params'][i] = master_param
                        fp32_from_fp16_params_this_group.append(master_param)
                        # Reset existing state dict key to the new master param.
                        if param in self.optimizer.state:
                            self.optimizer.state[master_param] \
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
                        raise TypeError("Wrapped parameters must be either "
                                        "torch.cuda.FloatTensor or "
                                        "torch.cuda.HalfTensor. "
                                        "Received {}".format(param.type()))

            self.fp16_groups.append(fp16_params_this_group)
            self.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
                fp16_groups & fp32_from_fp32_groups."""
        for group in self.fp16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
        return self.grad_scaler.scale


    @torch.no_grad()
    def step(self):

        # ==================================================
        # Copy gradients from model params to master params.
        # ==================================================

        # This only needs to be done for the fp16 group.
        model_grads = []
        master_grads = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                if model_param.grad is not None:
                    if master_param.grad is None:
                        master_param.grad = torch.empty_like(master_param)
                    model_grads.append(model_param.grad)
                    master_grads.append(master_param.grad)
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [model_grads, master_grads],
                             1.0)

        # ==============================
        # Unscale and check for inf/nan.
        # ==============================

        # Append fp32 parameters.
        for master_group in self.fp32_from_fp32_groups:
            for master_param in master_group:
                if master_param.grad is not None:
                    master_grads.append(master_param.grad)
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            master_grads, self.found_inf, self.grad_scaler.inv_scale)
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())

        # ==================================
        # We are done with scaling gradients
        # so we can update the loss scale.
        # ==================================
        found_inf_flag = (self.found_inf.item() > 0)
        self.grad_scaler.update(found_inf_flag)

        # =====================================
        # If we found inf/nan, skip the update.
        # =====================================
        if found_inf_flag:
            return False

        # ==========================
        # Clip the master gradients.
        # ==========================

        fp32_params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                fp32_params.append(param)
        mpu.clip_grad_norm(fp32_params, self.clip_grad)

        # ===================
        # Step the optimizer.
        # ===================

        self.optimizer.step()

        # =================================
        # Update params from master params.
        # =================================

        # Only needed for the fp16 params.
        model_data = []
        master_data = []
        for model_group, master_group in zip(self.fp16_groups,
                                             self.fp32_from_fp16_groups):
            for model_param, master_param in zip(model_group, master_group):
                model_data.append(model_param.data)
                master_data.append(master_param.data)
        self._dummy_overflow_buf.fill_(0)
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             self._dummy_overflow_buf,
                             [master_data, model_data],
                             1.0)

        return True