optimizer.py 61.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
34
# >>>
from lutil import pax, tp
# <<<
mohammad's avatar
mohammad committed
35

Lawrence McAfee's avatar
Lawrence McAfee committed
36

mohammad's avatar
mohammad committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


52
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
54
55
56
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
57
58
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
59
60
61
62
63
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
64
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
66
67
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

68

mohammad's avatar
mohammad committed
69
70
71

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
72
73
74

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
75
                 params_have_main_grad,
76
                 use_contiguous_buffers_in_local_ddp):
77

mohammad's avatar
mohammad committed
78
79
80
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81
82
83
84
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
85
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86

87
        if self.use_contiguous_buffers_in_local_ddp:
88
89
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
90

Rewon Child's avatar
Rewon Child committed
91
    def get_parameters(self):
92
93
94
95
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
96
97
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98

Rewon Child's avatar
Rewon Child committed
99
100
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
Lawrence McAfee's avatar
Lawrence McAfee committed
101
102
103
104
105
106
107
        # >>>
        # pax(0, {
        #     "clip_grad" : clip_grad,
        #     "params": [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ p.grad for p in params ],
        # })
        # <<<
108
        return clip_grad_norm_fp32(params, clip_grad)
109

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110

Rewon Child's avatar
Rewon Child committed
111
112
113
114
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
115

mohammad's avatar
mohammad committed
116
117
118
119
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
120

mohammad's avatar
mohammad committed
121
122
    @abstractmethod
    def get_loss_scale(self):
123
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
124
125
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126

mohammad's avatar
mohammad committed
127
128
129
130
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
131

Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
135
136
    @abstractmethod
    def reduce_gradients(self):
        pass


mohammad's avatar
mohammad committed
137
138
139
140
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141

Lawrence McAfee's avatar
Lawrence McAfee committed
142
143
144
145
146
    @abstractmethod
    def gather_params(self):
        pass


147
148
    @abstractmethod
    def reload_model_params(self):
149
150
151
152
153
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
154
155
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

mohammad's avatar
mohammad committed
162
163
164
165
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
166

mohammad's avatar
mohammad committed
167
168
169
170
171
172
173
174
175
176
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

mohammad's avatar
mohammad committed
178
179
180
181
182
183
184
185
186
187
188
189
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
190
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
191
192

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
193
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
194
195
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196

Lawrence McAfee's avatar
Lawrence McAfee committed
197
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198
            optimizer, clip_grad, log_num_zeros_in_grad,
199
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
200

201
202
203
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
        self.bf16 = bf16
mohammad's avatar
mohammad committed
205
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
207
208
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
209
210
211

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
212
213
214
215
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
216
217

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
218
219
220
221
222
223
224
225
226
227
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
228

Lawrence McAfee's avatar
Lawrence McAfee committed
229
230
231
232
233
234
235

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        # raise Exception("hi.")

        return found_inf_flag


    @torch.no_grad()
    def step(self):

        timers = get_timers()

        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

        # Step the optimizer.
        self.optimizer.step()

        # >>>
        # from lutil import pax, tp
        # pax(0, {
        #     "optimizer / state" :
        #     { hash(k):tp(v) for k,v in self.optimizer.state.items() },
        #     "optimizer / state / len" : len(self.optimizer.state),
        #     "optimizer / state / 0" : list(self.optimizer.state.values())[0],
        # })
        # <<<

        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
350
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
351
352
353
354

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
355
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
356

mohammad's avatar
mohammad committed
357
        # ======================
358
        # main parameter stuff
mohammad's avatar
mohammad committed
359
360
361
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
362
363
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
364
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
365
366
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
367
368
369
370
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
371
            float16_params_this_group = []
mohammad's avatar
mohammad committed
372
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
373
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
374
375
376
377
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
378
379
380
381
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
382
                        # Create a copy
383
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
384
                        # Copy tensor model parallel attributes.
385
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
386
                                                                  param)
387
                        if hasattr(param, 'shared'):
388
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
389
                        # Replace the optimizer params with the new fp32 copy.
390
                        param_group['params'][i] = main_param
391

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392
                        fp32_from_float16_params_this_group.append(main_param)
393
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
394
                        if param in self.optimizer.state:
395
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
396
397
398
399
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
400
401
402
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
403
404
405
406
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
407
408
409
410
411
412
413
414
415
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
416
417
418
419
420
421
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
422
423
424
425
426
427
428
429
430
431
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
432
433
434

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
435
436
437
438
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
439
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
440
            _zero_grad_group_helper(group, set_to_none)
441
442
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
443
444
445
446
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


447
    # >>>
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def reduce_gradients(self, model):

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

        # >>>
        # if not args.use_distributed_optimizer:

        # All-reduce if needed.
        # >>>
        # if args.DDP_impl == 'local' and not args.use_distributed_optimizer:
        if args.DDP_impl == 'local':
        # <<<
            timers('backward-params-all-reduce').start()
            for model_module in model:
                # >>>
                # from lutil import pax, tp
                # pax(0, {
                #     "model" : model,
                #     "model_module" : model_module,
                # })
                # <<<
                # >>>
                # e.g., grad_shard = optimizer.get_grad_shard()
                # <<<
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
505
506
507
508
509
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
510
                # +++
511
512
513
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
514
515
516
517
518
519
520
521
522
523
524
525
526
527
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
528
529
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
530
            # +++
531
532
533
534
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
535
536
537
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
538
539
540
541
    def gather_params(self):

        raise Exception("hi.")

542
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
544
545
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
546
            for model_param, main_param in zip(model_group, main_group):
547
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
548
549
550
551
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
552
553
554
555
556

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
557
                if self.params_have_main_grad and \
558
                   not self.use_contiguous_buffers_in_local_ddp:
559
560
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
562
563
564
565
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
566

567
568
569
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
570
                    if not self.use_contiguous_buffers_in_local_ddp:
571
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
572

Lawrence McAfee's avatar
Lawrence McAfee committed
573
574
    def _collect_main_grad_data_for_unscaling(self):

575
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
576
577

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
578
        for main_group in self.fp32_from_float16_groups:
579
580
581
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
582
583
584

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
585
        # Append fp32 parameters.
586
587
588
589
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
590
591
592
593
594
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
595

Lawrence McAfee's avatar
Lawrence McAfee committed
596
        return main_grads
mohammad's avatar
mohammad committed
597
598


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
600
        model_data = []
601
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
602
603
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
604
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
605
                model_data.append(model_param.data)
606
607
                main_data.append(main_param.data)
        return model_data, main_data
608
609


610
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
611
612
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
613
614
615
616
617
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
618
619
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
620
621
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
622
623
624


    def reload_model_params(self):
625
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
626

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
627

mohammad's avatar
mohammad committed
628
629
630
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
633
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
634
635
636
637
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
638
639
640
641
642
643
644
645
646
647
648
649
650
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
651
652
653
654
655
656
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
657

658
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
659
660
661
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
662
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
663
664
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
665
666
667
668
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


669
# >>>
670
import math
671

672
# from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
673

674
675
676
677
678
from megatron import get_args
# from megatron import get_timers
# from megatron.model import DistributedDataParallel as LocalDDP
# from megatron.model import Float16Module
# from megatron.utils import unwrap_model
679

Lawrence McAfee's avatar
Lawrence McAfee committed
680
681
682
683
684
685
686
687
688
689
690
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

691
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
692
693
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
694

695
696
697
698
699
700
701
702
    # >>>
    @classmethod
    def test_reduce_scatter(cls):

        torch.manual_seed(mpu.get_data_parallel_rank())
        size = (20,)
        dtype = torch.float
        device = torch.cuda.current_device()
703
        data_parallel_world_size = mpu.get_data_parallel_world_size()
704
705
706
707
708
709
710
711
712
713
714
715
716
        data_parallel_group = mpu.get_data_parallel_group()

        input_list = [
            # torch.randn(size, dtype = dtype, device = device)
            5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
            for _ in range(data_parallel_world_size)
        ]
        output = torch.empty(size, dtype = dtype, device = device)

        torch.distributed.reduce_scatter(
            output,
            input_list,
            group = data_parallel_group,
717
718
        )

719
720
721
722
723
724
725
726
727
728
729
730
        if torch.distributed.get_rank() == 0:
            print(output)
        pax(0, {
            "data_parallel_world_size" : data_parallel_world_size,
            "data_parallel_group" : data_parallel_group,
            "input_list" : input_list,
            "output" : tp(output),
        })
    # <<<

    # def __init__(self, *_args):
    #     super().__init__(*_args)
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    # def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
    #              params_have_main_grad, use_contiguous_buffers_in_local_ddp,
    #              bf16, grad_scaler):

    #     super().__init__(
    #         optimizer, clip_grad, log_num_zeros_in_grad,
    #         params_have_main_grad, use_contiguous_buffers_in_local_ddp,
    #         bf16, grad_scaler)

    #     # >>>
    #     # self.test_reduce_scatter()
    #     # <<<

    #     # >>>
    #     args = get_args()
    #     # <<<

    #     # Data parallel info.
    #     self.data_parallel_group = mpu.get_data_parallel_group()
    #     self.data_parallel_rank = mpu.get_data_parallel_rank()
    #     self.data_parallel_world_size = mpu.get_data_parallel_world_size()

    #     # Total trainable param count.
    #     # self.total_param_size = sum(
    #     #     p.numel()
    #     #     for g in self.param_groups
    #     #     for p in g["params"]
    #     #     # if p .requires_grad ???
    #     # )

    #     # Model params: group sizes, group offset maps.
    #     # self.model_params = []
    #     # self.model_param_group_sizes = []
    #     # self.model_param_group_offset_maps = []
    #     self.model_param_groups = []
    #     for param_group in self.optimizer.param_groups:
    #         param_group_offset = 0
    #         param_group_offset_map = {}
    #         for param in param_group['params']:
    #             if not param.requires_grad:
    #                 continue
    #             # self.model_params.append(param)
    #             param_group_offset_map[param] = {
    #                 "start" : param_group_offset,
    #                 "end" : param_group_offset + param.numel(),
    #             }
    #             param_group_offset += param.numel()
    #         # self.model_param_group_sizes.append(param_group_offset)
    #         # self.model_param_group_offset_maps.append(param_group_offset_map)
    #         self.model_param_groups.append({
    #             "size" : param_group_offset,
    #             "offset_map" : param_group_offset_map,
    #         })

    #     # pax(0, {
    #     #     "model_params" : model_params,
    #     #     "model_param_group_sizes" : model_param_group_sizes,
    #     #     "model_param_group_offset_maps" : model_param_group_offset_maps,
    #     # })

    #     # Shard allocator.
    #     # ** torch.nn.Parameter ??
    #     # ** MemoryBuffer ??
    #     allocate_shard = lambda shard_size, dtype : torch.empty(
    #         (shard_size,),
    #         dtype = dtype,
    #         device = torch.cuda.current_device(),
    #         requires_grad = True)

    #     # Allocate shards.
    #     # (Also, collect world DP shard info.)
    #     # model_main_dtypes = set([ args.params_dtype, torch.float ])
    #     model_main_dtypes = set([ torch.float ]) # fp32 only, for now
    #     # self.world_shard_info_groups = [] # world_group_shard_infos ?
    #     # self.main_param_shard_groups = []
    #     self.world_shard_infos = [{"groups": []} for _ in self.model_param_groups]
    #     for group_index, model_param_group in enumerate(self.model_param_groups):

    #         # Max world shard size.
    #         model_param_size = model_param_group["size"]
    #         max_world_shard_size = int(math.ceil(model_param_size /
    #                                              self.data_parallel_world_size))

    #         # DP world shard infos.
    #         # world_shard_infos = []
    #         for r in range(self.data_parallel_world_size):
    #             shard_start_index = r * max_world_shard_size
    #             shard_end_index = min(model_param_size,
    #                                   shard_start_index + max_world_shard_size)
    #             # world_shard_infos.append({
    #             self.world_shard_infos[r]["groups"].append({
    #                 "start" : shard_start_index,
    #                 "end" : shard_end_index,
    #                 "size" : shard_end_index - shard_start_index,
    #             })
    #         # self.world_shard_info_groups.append(world_shard_infos)
    #         # self.world_shard_infos[group_index].append(world_shard_infos)

    #         # DP local rank's shard info.
    #         # local_shard_info = world_shard_infos[self.data_parallel_rank]
    #         local_shard_info = \
    #             self.world_shard_infos[self.data_parallel_rank]["groups"][-1]
    #         local_shard_start_index = local_shard_info["start"]
    #         local_shard_end_index = local_shard_info["end"]
    #         local_shard_size = local_shard_info["size"]

    #         # Local shard's param 'slice' index map.
    #         local_shard_info["param_slice_index_map"] = {}
    #         for param, offset_dict in model_param_group["offset_map"].items():
    #             # param_start_index = offset_dict["start"]
    #             # param_end_index = offset_dict["end"]
    #             # param_shard_start_index = max(local_shard_start_index,
    #             #                               param_start_index)
    #             # param_shard_end_index = min(local_shard_end_index,
    #             #                             param_end_index)
    #             orig_start_index = offset_dict["start"]
    #             orig_end_index = offset_dict["end"]
    #             shard_start_index = max(
    #                 0,
    #                 orig_start_index - local_shard_start_index)
    #             shard_end_index = min(
    #                 local_shard_end_index,
    #                 orig_end_index - local_shard_start_index)

    #             # if param_shard_end_index > param_shard_start_index:
    #             #     # Indexes are relative to local shard start index.
    #             #     # local_shard_info["param_index_map"][param] = {
    #             #     #     "param" : (
    #             #     #         param_shard_start_index,
    #             #     #         param_shard_end_index,
    #             #     #     ),
    #             #     #     "shard" : (
    #             #     #         param_shard_start_index - local_shard_start_index,
    #             #     #         param_shard_end_index - local_shard_start_index,
    #             #     #     ),
    #             #     # }
    #             #     local_shard_info["param_slice_index_map"][param] = {
    #             #         "param_start" :
    #             #         param_shard_start_index,
    #             #         "shard_start" :
    #             #         param_shard_start_index - local_shard_start_index,
    #             #         "size":
    #             #         param_shard_end_index - param_shard_start_index,
    #             #     }
    #             if shard_end_index > shard_start_index:
    #                 local_shard_info["param_slice_index_map"][param] = {
    #                     "orig_start" : orig_start_index,
    #                     "shard_start" : shard_start_index,
    #                     "size" : shard_end_index - shard_start_index,
    #                 }

    #             # pax(0, {
    #             #     "local index" : "%d, %d" % (
    #             #         local_shard_start_index,
    #             #         local_shard_end_index,
    #             #     ),
    #             #     "param index" : "%s, %d" % (
    #             #         param_start_index,
    #             #         param_end_index,
    #             #     ),
    #             #     "param" : tp(param),
    #             #     "shard_param_index_map" : shard_param_index_map,
    #             #     "local_shard_info" : local_shard_info,
    #             # })

    #         # pax(2, {
    #         #     "data_parallel_rank" : self.data_parallel_rank,
    #         #     "local_shard_info" : local_shard_info,
    #         #     "param_index_map " : [
    #         #         (str(p.shape), i)
    #         #         for p, i in local_shard_info["param_index_map"].items()
    #         #     ],
    #         # })

    #         # Allocate shards.
    #         # (Non-fp32 shards are for convenience; e.g., intermediaries
    #         # between model params and main fp32 shard. Necessary???)
    #         # main_param_shards = {
    #         #     ty : allocate_shard(local_shard_size, ty)
    #         #     for ty in model_main_dtypes}
    #         main_param_shards = {}
    #         for dtype in model_main_dtypes:
    #             main_param = allocate_shard(local_shard_size, dtype)
    #             main_param.grad = allocate_shard(local_shard_size, dtype)
    #             # pax(0, {"main_param": main_param})
    #             main_param_shards[dtype] = main_param
    #         # self.main_param_shard_groups.append(main_param_shards)
    #         local_shard_info["data"] = main_param_shards

    #         # Update optimizer group.
    #         self.optimizer.param_groups[group_index]["params"] = \
    #             [ main_param_shards[torch.float] ]

    #         # pax(0, {
    #         #     "param_groups" : self.optimizer.param_groups,
    #         #     "params" : self.optimizer.param_groups[group_index]["params"],
    #         # })

    #     # Add world start/end indexes, for reduce/gather steps.
    #     offset = 0
    #     for r in self.world_shard_infos:
    #         r["start_index"] = offset
    #         offset += sum(g["size"] for g in r["groups"])
    #         r["end_index"] = offset

    #     # Leverage state_dict() and load_state_dict() to
    #     # recast preexisting per-param state tensors
    #     self.optimizer.load_state_dict(self.optimizer.state_dict())

    #     # >>>
    #     # pax(0, {
    #     #     "world_shard_infos" : self.world_shard_infos,
    #     #     **{
    #     #         "world_shard_infos / %d" % i : r
    #     #         for i, r in enumerate(self.world_shard_infos)
    #     #     },
    #     # })
    #     # <<<
    @classmethod
    # def get_ddp_gbuf_param_shards(cls, model, dtype, gbuf_start):
Lawrence McAfee's avatar
Lawrence McAfee committed
951
952
953
    # def get_ddp_gbuf_param_shard_map(cls, model, dtype, gbuf_start):
    # def get_model_gbuf_param_shard_index_map(cls,model,dtype,gbuf_world_index):
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
954

Lawrence McAfee's avatar
Lawrence McAfee committed
955
956
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
957
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
958
        for param, param_world_indexes in param_world_index_map.items():
959

Lawrence McAfee's avatar
Lawrence McAfee committed
960
961
962
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
963
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
964
965
966
967
968
969
970
971
972
973
974
975
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(param_world_start)
                param_shard_map[param] = {
                    "local" : param_local_shard,
                    "world" : param_world_shard,
976
977
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
978
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
979
980
981
982

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
983
984
985
986
    # def get_ddp_gbuf_shard(cls, model, dtype):
    # def get_model_gbuf_shard(cls, model, dtype):
    # def get_model_gbuf_shard_index(cls, model, dtype):
    def get_model_gbuf_shard(cls, model, dtype):
987

Lawrence McAfee's avatar
Lawrence McAfee committed
988
989
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
990
991

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
992
993
994
995
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

996
997
998
999
1000
1001
1002
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        gbuf_local_shard = gbuf_world_shard.normalize()
        # gbuf_local_shard = Shard(0, gbuf_world_index.size)

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
1015
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
1016
            "param_map" : param_shard_map,
1017
1018
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
1019
        # pax(0, {"data": data})
1020

Lawrence McAfee's avatar
Lawrence McAfee committed
1021
        return data
1022
1023
1024

    @classmethod
    # def get_ddp_gbuf_shards(cls, model):
Lawrence McAfee's avatar
Lawrence McAfee committed
1025
1026
1027
1028
    # def get_ddp_gbuf_shard_map(cls, model):
    # def get_model_gbuf_shard_map(cls, model):
    # def get_model_gbuf_shard_index_map(cls, model):
    def get_model_gbuf_shard_map(cls, model):
1029

Lawrence McAfee's avatar
Lawrence McAfee committed
1030
        # shard_index_map = {
1031
        shard_map = {
Lawrence McAfee's avatar
Lawrence McAfee committed
1032
            dtype : cls.get_model_gbuf_shard(model, dtype)
1033
1034
1035
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
1036
        # pax(0, {"shard_map": shard_map})
1037
1038
1039

        return shard_map

Lawrence McAfee's avatar
Lawrence McAfee committed
1040
    @classmethod
1041
    # def get_param_size_map(cls, model_gbuf_shards):
Lawrence McAfee's avatar
Lawrence McAfee committed
1042
1043
    # def get_param_model_gbuf_map(cls, model_gbuf_shards):
    def get_param_gbuf_map(cls, model_gbuf_shards):
1044

Lawrence McAfee's avatar
Lawrence McAfee committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
        # param_size_map = {}
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
1059

Lawrence McAfee's avatar
Lawrence McAfee committed
1060
1061
1062
1063
1064
1065
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
1066

Lawrence McAfee's avatar
Lawrence McAfee committed
1067
1068
        # return param_size_map
        return param_gbuf_map
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["local"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

                    # raise Exception("hi.")

        # pax(0, {"param_group_map": [
        #     (g, str(p.shape))
        #     for p, g in param_group_map.items()
        # ]})
        # pax(0, {"group_shards": group_shards})

        return group_shards

1109
1110
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1111
                 bf16, grad_scaler, models):
1112
1113
1114

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
1115
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
1116
            bf16, grad_scaler, models)
1117

1118
1119
        # >>>
        args = get_args()
1120
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
1121
        # <<<
1122

Lawrence McAfee's avatar
Lawrence McAfee committed
1123
        # pax(1, {"models": models})
1124

Lawrence McAfee's avatar
Lawrence McAfee committed
1125
1126
1127
1128
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
1129

1130
1131
1132
1133
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
1134
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
1135

1136
1137
1138
1139
1140
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

Lawrence McAfee's avatar
Lawrence McAfee committed
1141
        # pax(0, {"opt_group_shards": self.opt_group_shards})
1142
1143

        # Allocate main param/grad shard.
1144
1145
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
Lawrence McAfee's avatar
Lawrence McAfee committed
1146
1147
1148
1149
1150
1151
1152
1153
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)

        self.main_param_shards = []
        for group_index, group_shard in enumerate(self.opt_group_shards):
Lawrence McAfee's avatar
Lawrence McAfee committed
1154

Lawrence McAfee's avatar
Lawrence McAfee committed
1155
1156
            group_size = group_shard["size"]

Lawrence McAfee's avatar
Lawrence McAfee committed
1157
            # ** todo: for dtype in model_main_dtypes ........ **
Lawrence McAfee's avatar
Lawrence McAfee committed
1158
1159
1160
1161
1162

            # Allocate shard.
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            self.main_param_shards.append(main_param)
Lawrence McAfee's avatar
Lawrence McAfee committed
1163
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)
Lawrence McAfee's avatar
Lawrence McAfee committed
1164
1165
1166

            # Update optimizer group.
            self.optimizer.param_groups[group_index]["params"] = [ main_param ]
1167

Lawrence McAfee's avatar
Lawrence McAfee committed
1168
1169
1170
1171
        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1172
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
1173
1174
1175
1176
1177
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
1178
1179
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1180
1181
1182
1183
1184
    # def get_loss_scale(self):
    #     if self.grad_scaler is None:
    #         return self._scale_one
    #     return self.grad_scaler.scale

1185
1186
1187
1188
1189
1190
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1191

Lawrence McAfee's avatar
Lawrence McAfee committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    # def zero_grad(self, set_to_none=True):

    #     params = []
    #     for model_param_group in self.model_param_groups:
    #         params.extend(model_param_group["offset_map"].keys())
    #     for main_group in self.optimizer.param_groups:
    #         params.extend(main_group["params"])

    #     # _zero_grad_group_helper(params, set_to_none)
    #     _zero_grad_group_helper(params, set_to_none = False)

    #     # pax(0, {
    #     #     "model_param_groups" : self.model_param_groups,
    #     #     "params" : params,
    #     # })
Lawrence McAfee's avatar
Lawrence McAfee committed
1207
1208
    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1209
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1210
1211
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1212
1213
1214
1215
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1216

Lawrence McAfee's avatar
Lawrence McAfee committed
1217
1218
        _zero_grad_group_helper(model_params, set_to_none)
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1219

Lawrence McAfee's avatar
Lawrence McAfee committed
1220
        # pax(0, {"params": params})
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    # def reduce_gradients(self, model):

    #     # >>>
    #     # pax(0, {"main param" : self.world_shard_info_groups[0][self.data_parallel_rank]["data"][torch.float]})
    #     # <<<

    #     # >>>
    #     args = get_args()
    #     # timers = get_timers()
    #     # <<<

    #     # >>> [ temporary requirement ... and already checked in arguments.py ]
    #     assert args.use_contiguous_buffers_in_local_ddp
    #     # <<<

    #     # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    #     # Map param to virtual model.
    #     # ** ideally, this should happen once, during construction.
    #     param_model_map = {}
    #     for vmodel in model:
    #         for dtype, param_index_map in \
    #             vmodel._grad_buffer_param_index_map.items():
    #             for param in param_index_map:
    #                 param_model_map[param] = {
    #                     "dtype" : dtype,
    #                     "model" : vmodel,
    #                 }

    #     # pax(0, {
    #     #     "param_model_map" : [
    #     #         (str(tuple(p.shape)), m)
    #     #         for p, m in param_model_map.items()
    #     #     ],
    #     # })

    #     # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    #     # Copy model grads to main shard.
    #     local_shard_info_groups = [g[self.data_parallel_rank]
    #                                for g in self.world_shard_info_groups]
    #     for group_index, local_shard_info in enumerate(local_shard_info_groups):
            
    #         # model_param_index_map = 
    #         # shard_param_index_map = local_shard_info["param_index_map"]
    #         # main_index_map = local_shard_info["param_index_map"]
    #         main_slice_index_map = local_shard_info["param_slice_index_map"]
    #         for param, main_slice_indexes in main_slice_index_map.items():

    #             main_slice_orig_start_index = main_slice_indexes["orig_start"]
    #             main_slice_shard_start_index = main_slice_indexes["shard_start"]
    #             main_slice_size = main_slice_indexes["size"]

    #             dtype_model_dict = param_model_map[param]
    #             dtype = dtype_model_dict["dtype"]
    #             vmodel = dtype_model_dict["model"]
    #             model_grad_buffer = vmodel._grad_buffers[dtype].data
    #             model_grad_buffer_start_index = \
    #                 vmodel._grad_buffer_param_index_map[dtype][param][0] + \
    #                 main_slice_orig_start_index
                
    #             main_grad_view = local_shard_info["data"][torch.float].grad[
    #                 main_slice_shard_start_index:
    #                 main_slice_shard_start_index + main_slice_size
    #             ]
    #             model_grad_view = model_grad_buffer[
    #                 model_grad_buffer_start_index:
    #                 model_grad_buffer_start_index + main_slice_size
    #             ]

    #             main_grad_view.detach().copy_(model_grad_view)

    #             # pax(0, {
    #             #     # "local_shard_info" : local_shard_info,
    #             #     "main_slice_orig_start_index" : main_slice_orig_start_index,
    #             #     "main_slice_shard_start_index" : main_slice_shard_start_index,
    #             #     "main_slice_size" : main_slice_size,
    #             #     "model_grad_buffer_start_index" :
    #             #     model_grad_buffer_start_index,
    #             #     "main_grad_view" : tp(main_grad_view),
    #             #     "main_grad_view / detach" : tp(main_grad_view.detach()),
    #             #     "model_grad_view" : tp(model_grad_view),
    #             # })

    #         # pax(0, {
    #         #     "group_index" : group_index,
    #         #     "local_shard_info" : local_shard_info,
    #         #     "shard_param_index_map" : shard_param_index_map,
    #         #     "param" : tp(param),
    #         #     "shard_indexes" : shard_indexes,
    #         #     "grad_buffer_indexes" : grad_buffer_indexes,
    #         # })

    #     pax(0, {
    #         # "world_shard_info_groups" : self.world_shard_info_groups,
    #         # **{"world_shard_info_groups / %d" % i : v
    #         #    for i, v in enumerate(self.world_shard_info_groups)},
    #         # "local_shard_info_groups" : local_shard_info_groups,
    #         "local_shard_info_groups" : [ g["data"] for g in local_shard_info_groups ],
    #     })
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    def get_model_grad_buffer_dp_views(self):

        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]

                gbuf = model._grad_buffers[dtype]
                gbuf_views = []
                for shard in world_shards:
                    gbuf_views.append(gbuf.data[shard.start:shard.end])

                gbuf_view_items.append((model_index, dtype, gbuf_views))

        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1344
    def reduce_gradients(self, model):
1345

1346
        # >>>
1347
1348
1349
1350
        args = get_args()
        # timers = get_timers()
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1361
1362
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
        # # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        # assert args.use_contiguous_buffers_in_local_ddp

        # data_parallel_rank = mpu.get_data_parallel_rank()
        # data_parallel_group = mpu.get_data_parallel_group()
        # for model_index, model in enumerate(self.models):
        #     for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
        #         world_shards = gbuf_shard["world_all"]

        #         gbuf = model._grad_buffers[dtype]
        #         gbuf_views = []
        #         for shard in world_shards:
        #             gbuf_views.append(gbuf.data[shard.start:shard.end])

        #         torch.distributed.reduce_scatter(
        #             gbuf_views[data_parallel_rank],
        #             gbuf_views,
        #             group = data_parallel_group,
        #         )

        #         # pax(0, {
        #         #     "model_index" : model_index,
        #         #     "model" : model,
        #         #     "dtype" : str(dtype),
        #         #     "gbuf_shard" : gbuf_shard,
        #         #     "world_shards" : world_shards,
        #         #     "gbuf_views" : gbuf_views,
        #         # })
1392

Lawrence McAfee's avatar
Lawrence McAfee committed
1393
1394
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1395

1396
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1397

1398
1399
1400
1401
1402
1403
1404
1405
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            
        # pax(0, {"gbuf_view_items": gbuf_view_items})
Lawrence McAfee's avatar
Lawrence McAfee committed
1406

1407
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1408

1409
1410
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1411

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

        # for param, (model_index, dtype) in self.param_gbuf_map.items():
        #     gbuf = self.model_gbuf_shards[model_index][dtype]

        #     pax(0, {
        #         "param" : tp(param),
        #         "model_index" : model_index,
        #         "dtype" : str(dtype),
        #         "gbuf" : gbuf,
        #     })
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
            # pax(0, {
            #     "param" : tp(param),
            #     "main_grad" : tp(param.main_grad),
            #     # "grad" : tp(param.grad),
            # })
1437

1438
1439
1440
1441
1442
1443
1444
        # pax(0, {
        #     "gbuf_view_items" : gbuf_view_items,
        #     "param_gbuf_map" : [
        #         (str(tuple(p.shape)), d)
        #         for p, d in self.param_gbuf_map.items()
        #     ],
        # })
1445

Lawrence McAfee's avatar
Lawrence McAfee committed
1446
    # def step(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1447

Lawrence McAfee's avatar
Lawrence McAfee committed
1448
    #     raise Exception("step.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1449

Lawrence McAfee's avatar
Lawrence McAfee committed
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
    def _collect_main_grad_data_for_unscaling(self):
        # pax(1, {
        #     "main_param_shards" : self.main_param_shards,
        #     "grads" : [ p.grad.data for p in self.main_param_shards ],
        # })
        return [ p.grad.data for p in self.main_param_shards ]

    def _copy_model_grads_to_main_grads(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for param, main_shard in group_shard["param_map"].items():

                model_index, gbuf_dtype = self.param_gbuf_map[param]
                model_shard = self.model_gbuf_shards \
                    [model_index][gbuf_dtype]["param_map"][param]["world"]

                assert main_shard.size == model_shard.size

                model_grad_tensor = \
                    self.models[model_index]._grad_buffers[gbuf_dtype].data
                main_grad_tensor = \
                    self.main_param_shards[group_index].grad

                model_grad_view = \
                    model_grad_tensor[model_shard.start:model_shard.end]
                main_grad_view = \
                    main_grad_tensor[main_shard.start:main_shard.end]

                main_grad_view.detach().copy_(model_grad_view)

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
1498

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

    def _copy_main_params_to_model_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for param, main_shard in group_shard["param_map"].items():

                model_index, gbuf_dtype = self.param_gbuf_map[param]
                model_shard = self.model_gbuf_shards \
                    [model_index][gbuf_dtype]["param_map"][param]["world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_tensor = \
                    self.models[model_index]._grad_buffers[gbuf_dtype].data
                main_tensor = self.main_param_shards[group_index]

                # Copy sub-range within tensor.
                model_view = model_tensor[model_shard.start:model_shard.end]
                main_view = main_tensor[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)

                # Debug.
                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        # })

1542
1543
# <<<

mohammad's avatar
mohammad committed
1544

mohammad's avatar
mohammad committed
1545
1546
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1547
1548
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1549
                 params_have_main_grad,
1550
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1551
1552
1553

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1554
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1573
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1574

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1575
1576
1577
1578
1579
1580
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1581
1582
1583
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1584
                    if not self.use_contiguous_buffers_in_local_ddp:
1585
1586
                        param.main_grad = None

mohammad's avatar
mohammad committed
1587
        # Clip gradients.
1588
        grad_norm = None
mohammad's avatar
mohammad committed
1589
        if self.clip_grad > 0.0:
1590
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1591

Rewon Child's avatar
Rewon Child committed
1592
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1593
1594
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1595

mohammad's avatar
mohammad committed
1596
1597
1598
1599
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1600
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1601
1602


1603
1604
1605
1606
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1607
1608
1609
1610
1611
1612
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)