optimizer.py 27.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 2 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

101
102
103
104
105
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


Lawrence McAfee's avatar
Lawrence McAfee committed
106
107
    def clip_grad_norm(self, clip_grad, ITERATION):
        params = self.get_parameters()
108
109
110
111
        return clip_grad_norm_fp32(
            params, clip_grad,
            model_parallel_group=self.get_model_parallel_group(),
            ITERATION = ITERATION)
112

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113

Rewon Child's avatar
Rewon Child committed
114
115
    def count_zeros(self):
        params = self.get_parameters()
116
117
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
118

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
119

mohammad's avatar
mohammad committed
120
121
122
123
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
    @abstractmethod
    def get_loss_scale(self):
127
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
128
129
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
130

mohammad's avatar
mohammad committed
131
132
133
134
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
135

136
137
    @abstractmethod
    def reload_model_params(self):
138
139
140
141
142
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
143
144
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
145

mohammad's avatar
mohammad committed
146
147
148
149
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150

mohammad's avatar
mohammad committed
151
152
153
154
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155

mohammad's avatar
mohammad committed
156
157
158
159
160
161
162
163
164
165
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
166

mohammad's avatar
mohammad committed
167
168
169
170
171
172
173
174
175
176
177
178
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


179
    @abstractmethod
180
    def step(self, args, timers):
181
182
        pass

183
184
185
    def gather_model_params(self, args, timers, ITERATION):
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
186
187
        pass

188
189
190
    def allreduce_word_embedding_grads(self):
        '''
        All-reduce word embedding grads.
191

192
193
194
195
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

216
217
218
219
220
221
222
    def allreduce_position_embedding_grads(self):
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
223
224
225
226
227
228
229
230
231
232
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
233
234
235
236
237

    def allreduce_embedding_grads(self):
        self.allreduce_word_embedding_grads()
        self.allreduce_position_embedding_grads()

238
    def reduce_model_grads(self, args, timers):
239
240
241
242

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
243
244
            for model in self.models:
                model.allreduce_gradients()
245
246
247
248
249
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads()
250
251
        timers('backward-embedding-all-reduce').stop()

252

253
254
# class BaseFloat16Optimizer(MegatronOptimizer):
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
255
256

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
257
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
258
259
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
260

Lawrence McAfee's avatar
Lawrence McAfee committed
261
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
262
            optimizer, clip_grad, log_num_zeros_in_grad,
263
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
264

265
266
267
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
268
        self.bf16 = bf16
mohammad's avatar
mohammad committed
269
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270
271
272
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
273
274
275

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276
277
278
279
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
280
281

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
282
283
284
285
286
287
288
289
290
291
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
292

Lawrence McAfee's avatar
Lawrence McAfee committed
293
294
295
296
297
298
299

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
300
301
302
303
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


304
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
319
320
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
321
322
323
324
325
326

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
327
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             print("            + br/%s; [r%d, i%d]; %s, %.12e" % ("fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
380
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
381
382

    @torch.no_grad()
383
    def step(self, args, timers, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
384

385
        # timers = get_timers()
Lawrence McAfee's avatar
Lawrence McAfee committed
386

387
        # >>>
388
389
        # self.debug_model(ITERATION, "before copy grad.", 0)
        # self.debug_main(ITERATION, "before copy grad.", 0)
390
391
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
392
393
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
394
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
418
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
419
420
421
422
423
424
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

425
426
427
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
428
429
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
430
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
431
432
433
434
435
436
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
437
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
438
439
# class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
466
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
467
468
469
470

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
471
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
472

mohammad's avatar
mohammad committed
473
        # ======================
474
        # main parameter stuff
mohammad's avatar
mohammad committed
475
476
477
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
479
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
480
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
481
482
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
483
484
485
486
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
487
            float16_params_this_group = []
mohammad's avatar
mohammad committed
488
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
489
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
490
491
492
493
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
494
495
496
497
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
498
                        # Create a copy
499
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
500
                        # Copy tensor model parallel attributes.
501
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
502
                                                                  param)
503
                        if hasattr(param, 'shared'):
504
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
505
                        # Replace the optimizer params with the new fp32 copy.
506
                        param_group['params'][i] = main_param
507

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
                        fp32_from_float16_params_this_group.append(main_param)
509
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
510
                        if param in self.optimizer.state:
511
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
512
513
514
515
516
517
518
519
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
520
521
522
523
524
525
526
527
528
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
529
530
531
532
533
534
535
536
537
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
538
539
540
541
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
543
            _zero_grad_group_helper(group, set_to_none)
544
545
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
546
547
548
549
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


550
    def _collect_main_grad_data_for_unscaling(self):
551

552
        main_grads = []
553

554
555
556
557
558
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
559

560
561
562
563
564
565
566
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
567
568


569
570
571
572
573
574
575
576
577
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
578

Lawrence McAfee's avatar
Lawrence McAfee committed
579

580
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
581
582
583
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
584
            for model_param, main_param in zip(model_group, main_group):
585
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
586
587
588
589
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
590
591
592
593
594

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
595
                if self.params_have_main_grad and \
596
                   not self.use_contiguous_buffers_in_local_ddp:
597
598
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
600
601
602
603
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
604

605
606
607
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
608
                    if not self.use_contiguous_buffers_in_local_ddp:
609
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
610

611
612
613
614
615
616
617
618
619
620
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

621

622
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
623
624
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
625
626
627
628
629
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
631
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
632
633
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
634
635


mohammad's avatar
mohammad committed
636
637
638
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
639
640
641
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
642
643
644
645
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
646
647
648
649
650
651
652
653
654
655
656
657
658
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
659
660
661
662
663
664
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
665

666
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
667
668
669
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
670
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
671
672
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
673
674
675
676
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
677
678
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
679
680
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
681
                 params_have_main_grad,
682
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683
684
685

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
686
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
703
    def step(self, args, timers):
mohammad's avatar
mohammad committed
704
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
705
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
706

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
707
708
709
710
711
712
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

713
714
715
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
716
                    if not self.use_contiguous_buffers_in_local_ddp:
717
718
                        param.main_grad = None

mohammad's avatar
mohammad committed
719
        # Clip gradients.
720
        grad_norm = None
mohammad's avatar
mohammad committed
721
        if self.clip_grad > 0.0:
722
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
723

Rewon Child's avatar
Rewon Child committed
724
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
725
726
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
727

mohammad's avatar
mohammad committed
728
729
730
731
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
732
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
733
734


735
736
737
738
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
739
740
741
742
743
744
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)