optimizer.py 29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
22
23
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
mohammad's avatar
mohammad committed
24

mohammad's avatar
mohammad committed
25
26
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
27
from megatron import print_rank_0
28
29
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
30
31
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
32
from megatron.utils import unwrap_model
33

34
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
35

Lawrence McAfee's avatar
Lawrence McAfee committed
36

mohammad's avatar
mohammad committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


52
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
54
55
56
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
57
58
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
59
60
61
62
63
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
64
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
66
67
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

68

mohammad's avatar
mohammad committed
69
70
71

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
72
73
74

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
75
                 params_have_main_grad,
76
77
                 use_contiguous_buffers_in_local_ddp,
                 models):
78

mohammad's avatar
mohammad committed
79
80
81
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82
83
84
85
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
86
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
87

88
89
90
91
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

92
        if self.use_contiguous_buffers_in_local_ddp:
93
94
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
95

Rewon Child's avatar
Rewon Child committed
96
    def get_parameters(self):
97
98
99
100
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
101
102
        return params

103
    @abstractmethod
104
    def get_main_grads_for_grad_norm(self):
105
        pass
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106

107
108
109
110
111
    def get_model_parallel_group(self):
        '''Default returned here, but the distributed optimizer overrides this.'''
        return mpu.get_model_parallel_group()


112
    def clip_grad_norm(self, clip_grad):
Lawrence McAfee's avatar
Lawrence McAfee committed
113
        params = self.get_parameters()
114
        grads_for_norm = self.get_main_grads_for_grad_norm()
115
        return clip_grad_norm_fp32(
116
            params, grads_for_norm, clip_grad,
117
            model_parallel_group=self.get_model_parallel_group())
118

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
119

Rewon Child's avatar
Rewon Child committed
120
121
    def count_zeros(self):
        params = self.get_parameters()
122
123
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
124

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
125

mohammad's avatar
mohammad committed
126
127
128
129
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
130

mohammad's avatar
mohammad committed
131
132
    @abstractmethod
    def get_loss_scale(self):
133
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
134
135
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
136

mohammad's avatar
mohammad committed
137
138
139
140
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141

142
143
    @abstractmethod
    def reload_model_params(self):
144
145
146
147
148
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
149
150
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151

mohammad's avatar
mohammad committed
152
153
154
155
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

mohammad's avatar
mohammad committed
162
163
164
165
166
167
168
169
170
171
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172

mohammad's avatar
mohammad committed
173
174
175
176
177
178
179
180
181
182
183
184
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


185
    @abstractmethod
186
    def step(self, args, timers):
187
188
        pass

189
    def gather_model_params(self, args, timers):
190
191
        '''For the case of a non-distributed-optimizer, there is nothing to
        do here.'''
192
193
        pass

194
    def allreduce_word_embedding_grads(self, args):
195
196
        '''
        All-reduce word embedding grads.
197

198
199
200
201
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
        '''
202
203
204
205

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
206
                unwrapped_model = self.models[0]
207
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
208
                unwrapped_model = self.models[-1]
209
            else:  # We do not support the interleaved schedule for T5 yet.
210
                unwrapped_model = self.models[0]
211
212
213
214
215
216
217
218
219
220
221
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

222
    def allreduce_position_embedding_grads(self, args):
223
224
225
226
227
228
        '''
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
        '''
229
230
231
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
232
            unwrapped_model = self.models[0]
233
234
235
236
237
238
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
239

240
241
242
    def allreduce_embedding_grads(self, args):
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
243

244
    def reduce_model_grads(self, args, timers):
245
246
247
248

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
249
250
            for model in self.models:
                model.allreduce_gradients()
251
252
253
254
            timers('backward-params-all-reduce').stop()

        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
255
        self.allreduce_embedding_grads(args)
256
257
        timers('backward-embedding-all-reduce').stop()

258

259
class MixedPrecisionOptimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
260
261

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
262
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
263
264
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265

Lawrence McAfee's avatar
Lawrence McAfee committed
266
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
267
            optimizer, clip_grad, log_num_zeros_in_grad,
268
269
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
270
271

        self.bf16 = bf16
mohammad's avatar
mohammad committed
272
        self.grad_scaler = grad_scaler
273

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
274
275
276
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
277
278
279

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
282
283
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
284
285

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
286
287
288
289
290
291
292
293
294
295
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
296

Lawrence McAfee's avatar
Lawrence McAfee committed
297
298
299
300
301
302
303

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
304
305
306
307
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


308
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
309
310
311
312
313
314
315
316
317
318
319
320
321

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
322
323
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
324
325
326
327
328
329

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
330
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    # @classmethod
    # def debug_base(cls, ITERATION, key, value):
    #     from megatron import get_args
    #     args = get_args()
    #     my_rank = torch.distributed.get_rank()
    #     DEBUG_ITERATION = ITERATION
    #     if ITERATION != DEBUG_ITERATION:
    #         return
    #     for r in range(torch.distributed.get_world_size()):
    #         if my_rank == r:
    #             # prefix = "            + "
    #             prefix = ""
    #             print("%sbr/%s; [r%d, i%d]; %s, %.12e" % (prefix, "fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
    #         torch.distributed.barrier()
    #     torch.distributed.barrier()
    #     # if my_rank == 0:
    #     #     raise Exception("debug.")
    #     # else:
    #     #     exit(0)
    #     exit(0)
    # def debug_model(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         (p.main_grad.float() if use_grad else p.float())
    #         for m in self.models for p in m.parameters()
    #     ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "model/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
    # def debug_main(self, ITERATION, key, use_grad):
    #     use_grad = bool(use_grad)
    #     tensors = [
    #         p.grad if use_grad else p
    #         for g in self.optimizer.param_groups
    #         for p in g["params"]
    #     ]
    #     tensors = [ t.float() for t in tensors ]
    #     count = sum(t.nelement() for t in tensors)
    #     return self.debug_base(
    #         ITERATION,
    #         "main/%s, %s [count %d]" % (
    #             "grad" if use_grad else "param",
    #             key,
    #             count,
    #         ),
    #         sum(torch.sum(torch.abs(t)) for t in tensors),
    #     )
Lawrence McAfee's avatar
Lawrence McAfee committed
386
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
387
388

    @torch.no_grad()
389
    def step(self, args, timers):
390

Lawrence McAfee's avatar
Lawrence McAfee committed
391
392
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
393
        self._copy_model_grads_to_main_grads()
Lawrence McAfee's avatar
Lawrence McAfee committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
417
            grad_norm = self.clip_grad_norm(self.clip_grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
418
419
420
421
422
423
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

424
425
426
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
427
428
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
429
        self._copy_main_params_to_model_params()
Lawrence McAfee's avatar
Lawrence McAfee committed
430
431
432
433
434
435
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


436
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
463
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
464
465
466
467

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
468
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
469

mohammad's avatar
mohammad committed
470
        # ======================
471
        # main parameter stuff
mohammad's avatar
mohammad committed
472
473
474
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
475
476
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
477
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
479
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
480
481
482
483
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
484
            float16_params_this_group = []
mohammad's avatar
mohammad committed
485
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
486
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
487
488
489
490
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
492
493
494
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
495
                        # Create a copy
496
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
497
                        # Copy tensor model parallel attributes.
498
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
499
                                                                  param)
500
                        if hasattr(param, 'shared'):
501
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
502
                        # Replace the optimizer params with the new fp32 copy.
503
                        param_group['params'][i] = main_param
504

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
505
                        fp32_from_float16_params_this_group.append(main_param)
506
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
507
                        if param in self.optimizer.state:
508
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
509
510
511
512
513
514
515
516
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
517
518
519
520
521
522
523
524
525
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
526
527
528
529
530
531
532
533
534
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
535
536
537
538
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
540
            _zero_grad_group_helper(group, set_to_none)
541
542
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
543
544
545
546
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


547
    def get_main_grads_for_grad_norm(self):
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

        # Filter parameters based on:
        #   - grad should not be none
        #   - parameter should not be shared
        #   - should not be a replica due to tensor model parallelism
        params = self.get_parameters()
        # grads = []
        grads_for_norm = []
        for param in params:
            grad = param.grad
            grad_not_none = grad is not None
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            # if grad_not_none:
            #     grad = param.grad.detach()
            # if grad_not_none:
            #     # Make sure the grads are in fp32
            #     assert param.grad.type() == 'torch.cuda.FloatTensor'
            #     grads.append(grad)
            if grad_not_none and is_not_shared and is_not_tp_duplicate:
                grads_for_norm.append(grad)

        # pax(0, {"grads_for_norm": [
        #     str(tuple(g.shape))
        #     for g in grads_for_norm
        # ]})

        return grads_for_norm

577
    def _collect_main_grad_data_for_unscaling(self):
578

579
        main_grads = []
580

581
582
583
584
585
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
586

587
588
589
590
591
592
593
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
594
595


596
597
598
599
600
601
602
603
604
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
605

Lawrence McAfee's avatar
Lawrence McAfee committed
606

607
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
609
610
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
611
            for model_param, main_param in zip(model_group, main_group):
612
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
613
614
615
616
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
617
618
619
620
621

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
622
                if self.params_have_main_grad and \
623
                   not self.use_contiguous_buffers_in_local_ddp:
624
625
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
627
628
629
630
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
631

632
633
634
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
635
                    if not self.use_contiguous_buffers_in_local_ddp:
636
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
637

638

639
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
640
641
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
642
643
644
645
646
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
647
648
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
649
650
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
651
652


mohammad's avatar
mohammad committed
653
654
655
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
656
657
658
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
659
660
661
662
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
663
664
665
666
667
668
669
670
671
672
673
674
675
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
676
677
678
679
680
681
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
682

683
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
684
685
686
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
687
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
688
689
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
690
691
692
693
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
694
695
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
696
697
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
698
                 params_have_main_grad,
699
700
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
701
702
703

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
704
705
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
722
    def step(self, args, timers):
mohammad's avatar
mohammad committed
723
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
724
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
725

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
726
727
728
729
730
731
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

732
733
734
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
735
                    if not self.use_contiguous_buffers_in_local_ddp:
736
737
                        param.main_grad = None

mohammad's avatar
mohammad committed
738
        # Clip gradients.
739
        grad_norm = None
mohammad's avatar
mohammad committed
740
        if self.clip_grad > 0.0:
741
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
742

Rewon Child's avatar
Rewon Child committed
743
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
744
745
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
746

mohammad's avatar
mohammad committed
747
748
749
750
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
751
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
752
753


754
755
756
757
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
758
759
760
761
762
763
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)