optimizer.py 30.4 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
4
5
6
7
8

from abc import ABC
from abc import abstractmethod
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
9
10
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
Lawrence McAfee's avatar
Lawrence McAfee committed
11
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
mohammad's avatar
mohammad committed
12

mohammad's avatar
mohammad committed
13
14
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
15
from megatron import print_rank_0
16
17
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
18
19
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
20
from megatron.utils import unwrap_model
21

22
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
23

Lawrence McAfee's avatar
Lawrence McAfee committed
24

mohammad's avatar
mohammad committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


40
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
42
43
44
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
45
46
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
47
48
49
50
51
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
52
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
54
55
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

56

mohammad's avatar
mohammad committed
57
58
59

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
60
61
62

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
63
                 params_have_main_grad,
64
65
                 use_contiguous_buffers_in_local_ddp,
                 models):
66

mohammad's avatar
mohammad committed
67
68
69
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
70
71
72
73
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
74
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
75

76
77
78
79
        # 'models' are retained for access to the contiguous grad buffers.
        # (see distributed optimizer)
        self.models = models

80
        if self.use_contiguous_buffers_in_local_ddp:
81
82
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
83

84

Rewon Child's avatar
Rewon Child committed
85
    def get_parameters(self):
86
87
88
89
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
90
91
        return params

92

93
    def get_main_grads_for_grad_norm(self):
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        # Filter parameters based on:
        #   - grad should not be none
        #   - parameter should not be shared
        #   - should not be a replica due to tensor model parallelism
        params = self.get_parameters()
        grads_for_norm = []
        for param in params:
            grad = param.grad
            grad_not_none = grad is not None
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if grad_not_none and is_not_shared and is_not_tp_duplicate:
                grads_for_norm.append(grad)

        return grads_for_norm

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
111

112
    def get_model_parallel_group(self):
113
        """Default returned here, but the distributed optimizer overrides this."""
114
115
116
        return mpu.get_model_parallel_group()


117
    def clip_grad_norm(self, clip_grad):
Lawrence McAfee's avatar
Lawrence McAfee committed
118
        params = self.get_parameters()
119
        grads_for_norm = self.get_main_grads_for_grad_norm()
120
        return clip_grad_norm_fp32(
121
            params, grads_for_norm, clip_grad,
122
            model_parallel_group=self.get_model_parallel_group())
123

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

Rewon Child's avatar
Rewon Child committed
125
126
    def count_zeros(self):
        params = self.get_parameters()
127
128
        return count_zeros_fp32(params,
                                model_parallel_group=self.get_model_parallel_group())
Rewon Child's avatar
Rewon Child committed
129

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
130

mohammad's avatar
mohammad committed
131
132
133
134
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
135

mohammad's avatar
mohammad committed
136
137
    @abstractmethod
    def get_loss_scale(self):
138
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
139
140
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141

mohammad's avatar
mohammad committed
142
143
144
145
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
146

147
148
    @abstractmethod
    def reload_model_params(self):
149
150
151
152
153
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
154
155
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
156

mohammad's avatar
mohammad committed
157
158
159
160
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

mohammad's avatar
mohammad committed
162
163
164
165
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
166

mohammad's avatar
mohammad committed
167
168
169
170
171
172
173
174
175
176
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

mohammad's avatar
mohammad committed
178
179
180
181
182
183
184
185
186
187
188
189
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


190
    @abstractmethod
191
    def step(self, args, timers):
192
193
        pass

Lawrence McAfee's avatar
Lawrence McAfee committed
194

195
    def gather_model_params(self, args, timers):
196
197
198
199
        """
        For the case of a non-distributed-optimizer, there is nothing to
        do here.
        """
200
201
        pass

Lawrence McAfee's avatar
Lawrence McAfee committed
202

203
    def allreduce_word_embedding_grads(self, args):
204
        """
205
        All-reduce word embedding grads.
206

207
208
209
        Reduce grads across first and last stages to ensure that word_embeddings
        parameters stay in sync. This should only run for models that support
        pipelined model parallelism (BERT and GPT-2).
210
        """
211
212
213
214

        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
215
                unwrapped_model = self.models[0]
216
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
217
                unwrapped_model = self.models[-1]
218
            else:  # We do not support the interleaved schedule for T5 yet.
219
                unwrapped_model = self.models[0]
220
221
222
223
224
225
226
227
228
229
230
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())

Lawrence McAfee's avatar
Lawrence McAfee committed
231

232
    def allreduce_position_embedding_grads(self, args):
233
        """
234
235
236
237
        All-reduce position_embeddings grad across first (encoder) and
        split (decoder) stages to ensure that position embeddings parameters
        stay in sync. This should only run for T5 models with pipeline
        parallelism.
238
        """
239
240
241
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
242
            unwrapped_model = self.models[0]
243
244
245
246
247
248
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
249

Lawrence McAfee's avatar
Lawrence McAfee committed
250

251
    def allreduce_embedding_grads(self, args):
252
        """All-reduce both word and position embeddings."""
253
254
        self.allreduce_word_embedding_grads(args)
        self.allreduce_position_embedding_grads(args)
255

Lawrence McAfee's avatar
Lawrence McAfee committed
256

257
258
259
260
261
262
263
264
    def allreduce_layernorm_grads(self, args):
        """All-reduce layernorm grads (for sequence parallelism)."""

        # All-reduce layernorm parameters across model parallel nodes
        # when sequence parallelism is used
        if mpu.get_tensor_model_parallel_world_size() > 1 and \
                args.sequence_parallel:
            grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
265
            for model_module in self.models:
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                unwrapped_model = unwrap_model( 
                    model_module, (torchDDP, LocalDDP, Float16Module))
                for param in unwrapped_model.parameters():
                    if getattr(param, 'sequence_parallel', False):
                        grad = param.main_grad if args.DDP_impl == 'local' else param.grad
                        grads.append(grad.data)
            coalesced = _flatten_dense_tensors(grads)
            torch.distributed.all_reduce(
                coalesced, group=mpu.get_tensor_model_parallel_group())
            for buf, synced in zip(grads, _unflatten_dense_tensors(
                    coalesced, grads)):
                buf.copy_(synced)


280
    def reduce_model_grads(self, args, timers):
281
        """All-reduce all grads, and all-reduce embeddings."""
282

283
        # All-reduce layer-norm grads (for sequence parallelism).
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285
        timers('layernorm-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
286
        self.allreduce_layernorm_grads(args)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
        timers('layernorm-grads-all-reduce').stop()
288

289
290
        # All-reduce if needed.
        if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
291
292
            timers('grads-all-reduce', log_level=1).start(
                barrier=args.barrier_with_L1_time)
293
294
            for model in self.models:
                model.allreduce_gradients()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
295
            timers('grads-all-reduce').stop()
296
297

        # All-reduce embedding grads.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
298
299
        timers('embedding-grads-all-reduce', log_level=1).start(
            barrier=args.barrier_with_L1_time)
300
        self.allreduce_embedding_grads(args)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
301
        timers('embedding-grads-all-reduce').stop()
302

303

304
class MixedPrecisionOptimizer(MegatronOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    """Base class for both the float-16 and the distributed optimizer.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        use_contiguous_buffers_in_local_ddp: if true, the local DDP model
            is using a contiguous buffer to hold the model grads.
        fp16: if true, the model is running in fp16.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
        models: list of models (i.e., the virtual pipelining models). This
            is used by the distributed optimizer for mapping parameters.
    """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
333
334

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
335
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
336
                 fp16, bf16, grad_scaler,
337
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
338

Lawrence McAfee's avatar
Lawrence McAfee committed
339
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
340
            optimizer, clip_grad, log_num_zeros_in_grad,
341
342
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
343

344
        self.fp16 = fp16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
345
        self.bf16 = bf16
mohammad's avatar
mohammad committed
346
        self.grad_scaler = grad_scaler
347

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
348
349
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
350
            assert not self.fp16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
351
352
353

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
354
355
356
357
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
358
359

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
360
361
362
363
364
365
366
367
368
369
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
370

Lawrence McAfee's avatar
Lawrence McAfee committed
371
372
373
374
375
376
377

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
378
379
380
381
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


382
    def _unscale_main_grads_and_check_for_nan(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
383
384
385
386
387
388
389
390
391
392
393
394
395

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
396
397
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=self.get_model_parallel_group())
Lawrence McAfee's avatar
Lawrence McAfee committed
398
399
400
401
402
403
404
405

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag


    @torch.no_grad()
406
    def step(self, args, timers):
407

Lawrence McAfee's avatar
Lawrence McAfee committed
408
        # Copy gradients from model params to main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
409
410
        timers('optimizer-copy-to-main-grad', log_level=1).start(
            barrier=args.barrier_with_L1_time)
411
        self._copy_model_grads_to_main_grads()
Lawrence McAfee's avatar
Lawrence McAfee committed
412
413
414
415
416
417
418
        timers('optimizer-copy-to-main-grad').stop()

        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419
420
            timers('optimizer-unscale-and-check-inf', log_level=1).start(
                barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
421
422
423
424
425
426
427
428
429
430
431
432
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None

        # Clip the main gradients.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
433
434
        timers('optimizer-clip-main-grad', log_level=1).start(
            barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
435
436
        grad_norm = None
        if self.clip_grad > 0.0:
437
            grad_norm = self.clip_grad_norm(self.clip_grad)
Lawrence McAfee's avatar
Lawrence McAfee committed
438
439
        timers('optimizer-clip-main-grad').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
440
        # Count the zeros in the grads.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
441
442
        timers('optimizer-count-zeros', log_level=1).start(
            barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
443
444
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
445
        timers('optimizer-count-zeros').stop()
Lawrence McAfee's avatar
Lawrence McAfee committed
446

447
        # Step the optimizer.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
448
449
        timers('optimizer-inner-step', log_level=1).start(
            barrier=args.barrier_with_L1_time)
450
        self.optimizer.step()
451
        timers('optimizer-inner-step').stop()
452

Lawrence McAfee's avatar
Lawrence McAfee committed
453
        # Update params from main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
454
455
        timers('optimizer-copy-main-to-model-params', log_level=1).start(
            barrier=args.barrier_with_L1_time)
456
        self._copy_main_params_to_model_params()
Lawrence McAfee's avatar
Lawrence McAfee committed
457
458
459
460
461
462
        timers('optimizer-copy-main-to-model-params').stop()

        # Successful update.
        return True, grad_norm, num_zeros_in_grad


463
class Float16OptimizerWithFloat16Params(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
Lawrence McAfee's avatar
Lawrence McAfee committed
480
481
482
        use_contiguous_buffers_in_local_ddp: if true, the local DDP model
            is using a contiguous buffer to hold the model grads.
        fp16: if true, the model is running in fp16.
Lawrence McAfee's avatar
Lawrence McAfee committed
483
484
485
486
487
488
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
Lawrence McAfee's avatar
Lawrence McAfee committed
489
490
        models: list of models (i.e., the virtual pipelining models). This
            is used by the distributed optimizer for mapping parameters.
Lawrence McAfee's avatar
Lawrence McAfee committed
491
492
493
494
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
495
                 fp16, bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
496
497
498
499

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
500
            fp16, bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
501

mohammad's avatar
mohammad committed
502
        # ======================
503
        # main parameter stuff
mohammad's avatar
mohammad committed
504
505
506
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
507
508
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
509
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510
511
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
512
513
514
515
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
516
            float16_params_this_group = []
mohammad's avatar
mohammad committed
517
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
519
520
521
522
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
523
524
525
526
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
527
                        # Create a copy
528
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
529
                        # Copy tensor model parallel attributes.
530
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
531
                                                                  param)
532
                        if hasattr(param, 'shared'):
533
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
534
                        # Replace the optimizer params with the new fp32 copy.
535
                        param_group['params'][i] = main_param
536

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
537
                        fp32_from_float16_params_this_group.append(main_param)
538
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
539
                        if param in self.optimizer.state:
540
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
541
542
543
544
545
546
547
                                = self.optimizer.state.pop(param)
                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
548
549
550
551
552
553
554
555
556
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
557
558
559
            self.fp32_from_fp32_groups.append(fp32_params_this_group)


Lawrence McAfee's avatar
Lawrence McAfee committed
560
561
562
563
564
565
566
567
568
569
570
571
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for group in self.float16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
572
573


574
    def _collect_main_grad_data_for_unscaling(self):
575

576
        main_grads = []
577

578
579
580
581
582
        # fp32 params from float16 ones.
        for main_group in self.fp32_from_float16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
583

584
585
586
587
588
589
590
        # Append fp32 parameters.
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
        
        return main_grads
591
592


593
594
595
596
597
598
599
600
601
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
602

Lawrence McAfee's avatar
Lawrence McAfee committed
603

604
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
605
606
607
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
608
            for model_param, main_param in zip(model_group, main_group):
609
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
611
612
613
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
614
615
616
617
618

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
619
                if self.params_have_main_grad and \
620
                   not self.use_contiguous_buffers_in_local_ddp:
621
622
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
623
624
625
626
627
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
628

629
630
631
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
632
                    if not self.use_contiguous_buffers_in_local_ddp:
633
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
634

635

636
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
637
638
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
639
640
641
642
643
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
644
645
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
646
647
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
648
649


mohammad's avatar
mohammad committed
650
651
652
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
653
654
655
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
656
657
658
659
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
660
661
662
663
664
665
666
667
668
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
669
670
671
672
        if 'grad_scaler' not in state_dict:
            if self.fp16:
                print_rank_0('***WARNING*** found an old checkpoint, will not '
                             'load grad scaler ...')
mohammad's avatar
mohammad committed
673
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
674
675
676
677
678
679
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
680

681
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
684
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
685
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
686
687
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
688
689
690
691
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
692
693
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
694
695
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
696
                 params_have_main_grad,
697
698
                 use_contiguous_buffers_in_local_ddp,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
700
701

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
702
703
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            models)
mohammad's avatar
mohammad committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
720
    def step(self, args, timers):
mohammad's avatar
mohammad committed
721
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
722
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
723

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
724
        # Copy main_grads to grads.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
725
726
        timers('optimizer-copy-to-main-grad', log_level=1).start(
            barrier=args.barrier_with_L1_time)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
728
729
730
731
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

732
733
734
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
735
                    if not self.use_contiguous_buffers_in_local_ddp:
736
                        param.main_grad = None
737
        timers('optimizer-copy-to-main-grad').stop()
738

mohammad's avatar
mohammad committed
739
        # Clip gradients.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
740
741
        timers('optimizer-clip-main-grad', log_level=1).start(
            barrier=args.barrier_with_L1_time)
742
        grad_norm = None
mohammad's avatar
mohammad committed
743
        if self.clip_grad > 0.0:
744
            grad_norm = self.clip_grad_norm(self.clip_grad)
745
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
746

Rewon Child's avatar
Rewon Child committed
747
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
748
749
        timers('optimizer-count-zeros', log_level=1).start(
            barrier=args.barrier_with_L1_time)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
750
751
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
752
        timers('optimizer-count-zeros').stop()
Rewon Child's avatar
Rewon Child committed
753

mohammad's avatar
mohammad committed
754
        # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
755
756
        timers('optimizer-inner-step', log_level=1).start(
            barrier=args.barrier_with_L1_time)
mohammad's avatar
mohammad committed
757
        self.optimizer.step()
758
        timers('optimizer-inner-step').stop()
mohammad's avatar
mohammad committed
759
760

        # No overflow for FP32 optimizer.
761
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
762
763


764
765
766
767
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
768
769
770
771
772
773
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)