training.py 39.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54

55
56
57
# >>>
from lutil import pax
# <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
58

59
60
61
62
63
64
65
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


66
def pretrain(train_valid_test_dataset_provider,
67
             model_provider,
68
             model_type,
69
             forward_step_func,
70
             process_non_loss_data_func=None,
71
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
72
             args_defaults={}):
73
74
75
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
76
77
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
78
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
79
        4) train the modle using the forward_step_func.
80
81

    Arguments:
82
83
84
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
85
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
86
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
87
88
89
90
91
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
92
93
94
95
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
96
97
98
99
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
100
101
    """

102
    # Initalize and get arguments, timers, and Tensorboard writer.
103
104
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
105

106
107
108
109
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
110
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
111
112
113
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
114
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
115
116
117
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

118
    args = get_args()
Mohammad's avatar
Mohammad committed
119
    timers = get_timers()
120
121

    # Model, optimizer, and learning rate.
122
    timers('model-and-optimizer-setup').start()
123
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
124
                                                               model_type)
125
    timers('model-and-optimizer-setup').stop()
126
127
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
128
129

    # Data stuff.
130
131
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
132
        all_data_iterators = [
133
134
135
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
136
137
138
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
139
140
141
142
143
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
144
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
145
146

    # Print setup timing.
147
148
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
149
    print_rank_0('training ...')
150
151

    iteration = 0
152
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
153
        iteration = train(forward_step_func,
154
                          model, optimizer, opt_param_scheduler,
155
156
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
157
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
158

159
160
161
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
162
                                   valid_data_iterator, model,
163
164
                                   iteration, process_non_loss_data_func,
                                   False)
165
166

    if args.save and iteration != 0:
167
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
168
169
170
171
172
173

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
174
175
                                   0, process_non_loss_data_func,
                                   True)
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
193
194
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
195
196
            iterations += 1
        # Reset
197
        update_num_microbatches(0, consistency_check=False)
198
199
200
201
202
203
204
205
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

206

207
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
208
    """Build the model."""
Mohammad's avatar
Mohammad committed
209
    args = get_args()
210
    args.model_type = model_type
211

212
    # Build model.
213
214
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
215
216
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
217
218
219
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
220
221
222
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
223
            this_model = model_provider_func(
224
225
226
                pre_process=pre_process,
                post_process=post_process
            )
227
            this_model.model_type = model_type
228
            model.append(this_model)
229
    else:
230
231
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
257

258
259
    if not isinstance(model, list):
        model = [model]
260

261
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
262
263
264
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
265
266
267
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
268

269
270
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
271
        print(' > number of parameters on (tensor, pipeline) '
272
              'model parallel rank ({}, {}): {}'.format(
273
274
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
275
276
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
277
278

    # GPU allocation.
279
280
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
281
282

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
284
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
285

286
287
288
289
290
291
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
292

293
294
295
296
297
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
298
299
300
301
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
302
303
304
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
305

306
    return model
307
308


309
def get_optimizer_param_scheduler(optimizer):
310
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
311
    args = get_args()
312

313
314
315
316
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
318
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
319
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
321
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
323
324
325
326
327
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
328
        update_train_iters(args)
329
330
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
332
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
333
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
335
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
336
            lr_warmup_steps = args.lr_warmup_samples
337
    else:
338
339
340
        raise Exception(
            'either train-iters or train-samples should be provided.')

341
    opt_param_scheduler = OptimizerParamScheduler(
342
        optimizer,
343
        max_lr=args.lr,
344
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
347
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
349
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
        wd_incr_style=args.weight_decay_incr_style,
352
353
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
354

355
    return opt_param_scheduler
356
357


358
359
360
361
362
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
363
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
364
    args = get_args()
365

366
    model = get_model(model_provider_func, model_type)
367

368
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
369
                                   (torchDDP, LocalDDP, Float16Module))
370
371
372
373
    # >>>
    # optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
    #                                    scale_lr_cond, lr_mult)
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
374
                                       scale_lr_cond, lr_mult)
375
    # <<<
376

377
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
378
379

    if args.load is not None:
380
381
382
383
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
384
        timers('load-checkpoint').start()
385
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
386
        torch.distributed.barrier()
387
388
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
389
390
391
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
392
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
393
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
394
395
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
396
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
399
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
400
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
401
402
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
403

404
    return model, optimizer, opt_param_scheduler
405
406


407
def train_step(forward_step_func, data_iterator,
408
409
               model, optimizer, opt_param_scheduler,
               ITERATION):
410
411
412
413
414
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
415
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
416
417
        for partition in model:
            partition.zero_grad_buffer()
418
    optimizer.zero_grad()
419

420
421
422
    # >>>
    # Forward pass.
    # <<<
423
    forward_backward_func = get_forward_backward_func()
424
425
426
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
427

428
429
430
    # >>>
    # Empty unused memory.
    # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
431
    if args.empty_unused_memory_level >= 1:
432
433
        torch.cuda.empty_cache()

434
435
436
437
    # >>>
    # optimizer.debug_model(ITERATION, "before reduce grads.", 0)
    # <<<

438
439
440
    # >>>
    # Reduce gradients. (with distributed optimizer option, optimizer
    # now responsible for reducing gradients)
441
    optimizer.reduce_grads(model)
442
443
    # <<<

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    # >>>
    # r = mpu.get_data_parallel_rank()
    # w = mpu.get_data_parallel_world_size()
    # gbufs = []
    # for m in model:
    #     for g in m._grad_buffers.values():
    #         t = g.data
    #         n = t.nelement()
    #         shard = int(n / w)
    #         start_index = r * shard
    #         end_index = min(n, start_index + shard)
    #         gbufs.append(t[start_index:end_index])
    # pax(1, {"gbufs": gbufs})
    # <<<

459
    # >>>
460
461
    # from lutil import pax
    # pax(0, {"optimizer": optimizer})
462
    # <<<
463

464
465
    # Update parameters.
    timers('optimizer').start()
466
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(ITERATION)
467
468
    timers('optimizer').stop()

469
470
471
    # >>>
    # Gather params gradients. (with distributed optimizer option, optimizer
    # now responsible for gathering updated params)
472
473
474
475
476
    optimizer.gather_params(ITERATION)
    # <<<

    # >>>
    # optimizer.debug_model(ITERATION, "after gather params.", 0)
477
478
    # <<<

479
    # Update learning rate.
480
    if update_successful:
481
482
483
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
484
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
485
        skipped_iter = 0
486
487
488
    else:
        skipped_iter = 1

489
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
490
    if args.empty_unused_memory_level >= 2:
491
492
        torch.cuda.empty_cache()

493
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
494
495
496
497
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
498
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
499
500
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
501
502


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
503
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
504
                 loss_scale, report_memory_flag, skipped_iter,
505
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
506
507
508
509
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510

mohammad's avatar
mohammad committed
511
512
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
513
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
514
515
516
517
518
519
520
521
522
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
523
524
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
525
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
526
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527
    for key in loss_dict:
mohammad's avatar
mohammad committed
528
        if not skipped_iter:
529
530
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
531
532
533
534
535
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
536
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
537
538
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
540
541

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
542

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
544
545
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
546
547
548
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
549
    add_to_logging('forward-backward-send-forward-backward-recv')
550
551
552
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
553
    add_to_logging('backward-send-forward-recv')
554
    add_to_logging('backward-send-backward-recv')
555
    add_to_logging('backward-params-all-reduce')
556
    add_to_logging('backward-embedding-all-reduce')
557
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
558
    add_to_logging('optimizer-unscale-and-check-inf')
559
560
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
562
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
563

mohammad's avatar
mohammad committed
564
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
565
566
567
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
568
569
570
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
571
    # Tensorboard values.
572
573
574
575
576
577
578
579
580
581
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
        for key in loss_dict:
mohammad's avatar
mohammad committed
583
584
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
585
                              args.consumed_train_samples)
586
587
588
589
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
590
591
592
593
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
594
595
596
597
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
598
599
600
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
601
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
602
603
604
605
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
606
607
608
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
627

    if iteration % args.log_interval == 0:
628
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
629
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
630
        if writer:
631
632
633
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
634
635
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
636
        log_string += ' consumed samples: {:12d} |'.format(
637
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
638
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
639
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
640
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
641
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
643
644
645
646
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
647
648
649
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
650
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
651
652
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
653
654
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
655
656
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
657
658
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
659
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
660
661
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
662
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
663
        total_loss_dict[nan_iters_key] = 0
664
        print_rank_last(log_string)
665
666
667
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
669
670
671
672
673
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


674
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
675
676
677
678
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
679
    timers('save-checkpoint').start()
680
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
681
    torch.distributed.barrier()
682
683
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
684
685


686
def train(forward_step_func, model, optimizer, opt_param_scheduler,
687
688
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
689
    """Train the model function."""
Mohammad's avatar
Mohammad committed
690
691
    args = get_args()
    timers = get_timers()
692

693
694
695
    # Write args to tensorboard
    write_args_to_tensorboard()

696
    # Turn on training mode which enables dropout.
697
698
    for model_module in model:
        model_module.train()
699
700
701
702
703
704
705

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

706
    timers('interval-time').start()
707
    print_datetime('before the start of training step')
708
709
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
710
        update_num_microbatches(args.consumed_train_samples)
711
712
713
714
715
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
716
717
718
719
                       opt_param_scheduler
                       # >>>
                       ,ITERATION = iteration)
                       # <<<
720
        iteration += 1
721
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
722
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
723
                                       get_num_microbatches()
724
725

        # Logging.
726
        loss_scale = optimizer.get_loss_scale().item()
727
728
729
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
730
731
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
732
                                          iteration, loss_scale,
733
                                          report_memory_flag, skipped_iter,
734
                                          grad_norm, params_norm, num_zeros_in_grad)
735
736

        # Autoresume
737
738
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
739
            check_adlr_autoresume_termination(iteration, model, optimizer,
740
                                              opt_param_scheduler)
741
742
743
744
745
746

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
747
                                       valid_data_iterator, model,
748
749
                                       iteration, process_non_loss_data_func,
                                       False)
750

751
752
        # Checkpointing
        saved_checkpoint = False
753
754
755
756
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
757
                                         opt_param_scheduler)
758
759
760
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

761
762
763
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
764
                                     opt_param_scheduler)
765
766
            saved_checkpoint = True

767
768
769
770
771
772
773
774
775
776
777
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
778
                                             opt_param_scheduler)
779
                print_datetime('exiting program after {} minutes'.format(train_time))
780
781
                sys.exit()

782
        # Exiting based on iterations
783
        if args.exit_interval and iteration % args.exit_interval == 0:
784
785
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
786
                                         opt_param_scheduler)
787
            torch.distributed.barrier()
788
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
789
            sys.exit()
790

791

mohammad's avatar
mohammad committed
792
    return iteration
793
794


795
796
797
798
799
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
800
    """Evaluation."""
Mohammad's avatar
Mohammad committed
801
    args = get_args()
802
803

    # Turn on evaluation mode which disables dropout.
804
805
    for model_module in model:
        model_module.eval()
806
807
808
809
810
811
812
813
814
815

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
816

817
            forward_backward_func = get_forward_backward_func()
818
819
820
821
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

822
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
823
            if args.empty_unused_memory_level >= 1:
824
825
                torch.cuda.empty_cache()

826
827
828
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
829
                    for key in loss_dict:
830
831
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
832

833
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
834
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
835
                                           * get_num_microbatches()
836
837
838
839
840
841
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

842
    # Move model back to the train mode.
843
844
    for model_module in model:
        model_module.train()
845
846

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
847
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
848

849
    return total_loss_dict, collected_non_loss_data
850
851
852

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
853
854
                               iteration, process_non_loss_data_func,
                               verbose=False):
855
    """Helper function to evaluate and dump results on screen."""
856
    args = get_args()
Mohammad's avatar
Mohammad committed
857
858
    writer = get_tensorboard_writer()

859
860
861
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
862
863
864
865
866
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
867
        if writer:
mohammad's avatar
mohammad committed
868
            writer.add_scalar('{} validation'.format(key),
869
870
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
871
            writer.add_scalar('{} validation vs samples'.format(key),
872
873
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
874
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
875
                writer.add_scalar('{} validation ppl'.format(key), ppl,
876
                                  iteration)
mohammad's avatar
mohammad committed
877
                writer.add_scalar('{} validation ppl vs samples'.format(key),
878
                                  ppl, args.consumed_train_samples)
879

880
881
882
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

883
    length = len(string) + 1
884
885
886
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
887
888


Vijay Korthikanti's avatar
Vijay Korthikanti committed
889
def cyclic_iter(iter):
890
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
891
        for x in iter:
892
893
            yield x

894
895
896
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
897
    args = get_args()
898

899
900
901
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
902
903
904

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
905
906
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
907
        args.consumed_train_samples = args.iteration * args.global_batch_size
908
    if args.iteration > 0 and args.consumed_valid_samples == 0:
909
910
911
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
912

913
    # Data loader only on rank 0 of each model parallel group.
914
    if mpu.get_tensor_model_parallel_rank() == 0:
915
916

        # Number of train/valid/test samples.
917
918
919
920
921
922
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
923
        test_iters = args.eval_iters
924
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
925
926
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
927
928
929
930
931
932
933
934
935
936
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
937
938
939
940
941
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
942
943
944
945
946
947
948
949
950
951
952
953
954

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
955
956
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
957
958
959
960
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
961

962
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
963
964
965
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

966
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
967
968
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
969
970
971
    else:
        train_data_iterator = None

972
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
973
974
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
975
    else:
976
        valid_data_iterator = None
977

978
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
979
980
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
981
982
983
    else:
        test_data_iterator = None

984
    return train_data_iterator, valid_data_iterator, test_data_iterator