training.py 38.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103

104
105
106
107
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
108
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
109
110
111
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
112
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
113
114
115
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

116
    args = get_args()
Mohammad's avatar
Mohammad committed
117
    timers = get_timers()
118
119

    # Model, optimizer, and learning rate.
120
    timers('model-and-optimizer-setup').start()
121
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
122
                                                               model_type)
123
    timers('model-and-optimizer-setup').stop()
124
125
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
126
127

    # Data stuff.
128
129
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
130
        all_data_iterators = [
131
132
133
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
134
135
136
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
137
138
139
140
141
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
142
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
143
144

    # Print setup timing.
145
146
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
147
    print_rank_0('training ...')
148
149

    iteration = 0
150
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
151
        iteration = train(forward_step_func,
152
                          model, optimizer, opt_param_scheduler,
153
154
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
155
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
156

157
158
159
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
160
                                   valid_data_iterator, model,
161
162
                                   iteration, process_non_loss_data_func,
                                   False)
163
164

    if args.save and iteration != 0:
165
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
166
167
168
169
170
171

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
172
173
                                   0, process_non_loss_data_func,
                                   True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
    # Build model.
211
212
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
213
214
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
215
216
217
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
218
219
220
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
221
            this_model = model_provider_func(
222
223
224
                pre_process=pre_process,
                post_process=post_process
            )
225
            this_model.model_type = model_type
226
            model.append(this_model)
227
    else:
228
229
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
255

256
257
    if not isinstance(model, list):
        model = [model]
258

259
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
260
261
262
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
263
264
265
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
266

267
268
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
269
        print(' > number of parameters on (tensor, pipeline) '
270
              'model parallel rank ({}, {}): {}'.format(
271
272
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
273
274
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
275
276

    # GPU allocation.
277
278
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
279
280

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
283

284
285
286
287
288
289
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
290

291
292
293
294
295
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
296
297
298
299
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
300
301
302
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
303

304
    return model
305
306


307
def get_optimizer_param_scheduler(optimizer):
308
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

311
312
313
314
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
317
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
319
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
321
322
323
324
325
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
326
        update_train_iters(args)
327
328
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
331
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
333
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_samples
335
    else:
336
337
338
        raise Exception(
            'either train-iters or train-samples should be provided.')

339
    opt_param_scheduler = OptimizerParamScheduler(
340
        optimizer,
341
        max_lr=args.lr,
342
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
343
344
345
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
        wd_incr_style=args.weight_decay_incr_style,
350
351
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
352

353
    return opt_param_scheduler
354
355


356
357
358
359
360
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
361
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
362
    args = get_args()
363

364
    model = get_model(model_provider_func, model_type)
365

366
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
                                   (torchDDP, LocalDDP, Float16Module))
368
369
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
370

371
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
372
373

    if args.load is not None:
374
375
376
377
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
378
        timers('load-checkpoint').start()
379
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
380
        torch.distributed.barrier()
381
382
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
383
384
385
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
386
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
388
389
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
390
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
391
392
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
393
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
394
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
395
396
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
397

398
    return model, optimizer, opt_param_scheduler
399
400


401
def train_step(forward_step_func, data_iterator,
402
               model, optimizer, opt_param_scheduler):
403
404
405
406
407
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
408
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
409
410
        for partition in model:
            partition.zero_grad_buffer()
411
    optimizer.zero_grad()
412

413
414
415
    # >>>
    # Forward pass.
    # <<<
416
    forward_backward_func = get_forward_backward_func()
417
418
419
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
420

421
422
423
    # >>>
    # Empty unused memory.
    # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
424
    if args.empty_unused_memory_level >= 1:
425
426
        torch.cuda.empty_cache()

427
428
429
430
431
432
433
434
435
436
    # >>>
    # Reduce gradients. (with distributed optimizer option, optimizer
    # now responsible for reducing gradients)
    optimizer.reduce_gradients()
    # <<<

    # >>>
    from lutil import pax
    pax({"optimizer": optimizer})
    # <<<
437

438
439
    # Update parameters.
    timers('optimizer').start()
440
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
441
442
443
    timers('optimizer').stop()

    # Update learning rate.
444
    if update_successful:
445
446
447
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
448
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
449
        skipped_iter = 0
450
451
452
    else:
        skipped_iter = 1

453
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
454
    if args.empty_unused_memory_level >= 2:
455
456
        torch.cuda.empty_cache()

457
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
458
459
460
461
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
462
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
463
464
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
465
466


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
467
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
468
                 loss_scale, report_memory_flag, skipped_iter,
469
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
470
471
472
473
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
474

mohammad's avatar
mohammad committed
475
476
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
477
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
478
479
480
481
482
483
484
485
486
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
487
488
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
489
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
490
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
    for key in loss_dict:
mohammad's avatar
mohammad committed
492
        if not skipped_iter:
493
494
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
495
496
497
498
499
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
500
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
501
502
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
503
504
505

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
506

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
507
508
509
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
510
511
512
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
513
    add_to_logging('forward-backward-send-forward-backward-recv')
514
515
516
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
517
    add_to_logging('backward-send-forward-recv')
518
    add_to_logging('backward-send-backward-recv')
519
    add_to_logging('backward-params-all-reduce')
520
    add_to_logging('backward-embedding-all-reduce')
521
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
522
    add_to_logging('optimizer-unscale-and-check-inf')
523
524
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
525
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
526
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527

mohammad's avatar
mohammad committed
528
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
529
530
531
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
532
533
534
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
535
    # Tensorboard values.
536
537
538
539
540
541
542
543
544
545
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
546
        for key in loss_dict:
mohammad's avatar
mohammad committed
547
548
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
549
                              args.consumed_train_samples)
550
551
552
553
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
554
555
556
557
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
558
559
560
561
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
562
563
564
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
565
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
566
567
568
569
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
570
571
572
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
590
591

    if iteration % args.log_interval == 0:
592
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
593
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
594
        if writer:
595
596
597
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
598
599
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
600
        log_string += ' consumed samples: {:12d} |'.format(
601
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
602
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
603
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
604
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
605
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
606
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
607
608
609
610
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
611
612
613
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
614
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
615
616
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
617
618
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
619
620
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
621
622
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
623
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
624
625
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
626
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
627
        total_loss_dict[nan_iters_key] = 0
628
        print_rank_last(log_string)
629
630
631
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
632
633
634
635
636
637
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


638
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
639
640
641
642
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
643
    timers('save-checkpoint').start()
644
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
645
    torch.distributed.barrier()
646
647
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
648
649


650
def train(forward_step_func, model, optimizer, opt_param_scheduler,
651
652
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
653
    """Train the model function."""
Mohammad's avatar
Mohammad committed
654
655
    args = get_args()
    timers = get_timers()
656

657
658
659
    # Write args to tensorboard
    write_args_to_tensorboard()

660
    # Turn on training mode which enables dropout.
661
662
    for model_module in model:
        model_module.train()
663
664
665
666
667
668
669

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

670
    timers('interval-time').start()
671
    print_datetime('before the start of training step')
672
673
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
674
        update_num_microbatches(args.consumed_train_samples)
675
676
677
678
679
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
680
                       opt_param_scheduler)
681
        iteration += 1
682
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
683
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
684
                                       get_num_microbatches()
685
686

        # Logging.
687
        loss_scale = optimizer.get_loss_scale().item()
688
689
690
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
691
692
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
693
                                          iteration, loss_scale,
694
                                          report_memory_flag, skipped_iter,
695
                                          grad_norm, params_norm, num_zeros_in_grad)
696
697

        # Autoresume
698
699
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
700
            check_adlr_autoresume_termination(iteration, model, optimizer,
701
                                              opt_param_scheduler)
702
703
704
705
706
707

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
708
                                       valid_data_iterator, model,
709
710
                                       iteration, process_non_loss_data_func,
                                       False)
711

712
713
        # Checkpointing
        saved_checkpoint = False
714
715
716
717
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
718
                                         opt_param_scheduler)
719
720
721
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

722
723
724
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
725
                                     opt_param_scheduler)
726
727
            saved_checkpoint = True

728
729
730
731
732
733
734
735
736
737
738
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
739
                                             opt_param_scheduler)
740
                print_datetime('exiting program after {} minutes'.format(train_time))
741
742
                sys.exit()

743
        # Exiting based on iterations
744
        if args.exit_interval and iteration % args.exit_interval == 0:
745
746
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
747
                                         opt_param_scheduler)
748
            torch.distributed.barrier()
749
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
750
            sys.exit()
751

752

mohammad's avatar
mohammad committed
753
    return iteration
754
755


756
757
758
759
760
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
761
    """Evaluation."""
Mohammad's avatar
Mohammad committed
762
    args = get_args()
763
764

    # Turn on evaluation mode which disables dropout.
765
766
    for model_module in model:
        model_module.eval()
767
768
769
770
771
772
773
774
775
776

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
777

778
            forward_backward_func = get_forward_backward_func()
779
780
781
782
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

783
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
784
            if args.empty_unused_memory_level >= 1:
785
786
                torch.cuda.empty_cache()

787
788
789
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
790
                    for key in loss_dict:
791
792
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
793

794
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
795
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
796
                                           * get_num_microbatches()
797
798
799
800
801
802
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

803
    # Move model back to the train mode.
804
805
    for model_module in model:
        model_module.train()
806
807

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
808
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
809

810
    return total_loss_dict, collected_non_loss_data
811
812
813

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
814
815
                               iteration, process_non_loss_data_func,
                               verbose=False):
816
    """Helper function to evaluate and dump results on screen."""
817
    args = get_args()
Mohammad's avatar
Mohammad committed
818
819
    writer = get_tensorboard_writer()

820
821
822
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
823
824
825
826
827
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
828
        if writer:
mohammad's avatar
mohammad committed
829
            writer.add_scalar('{} validation'.format(key),
830
831
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
832
            writer.add_scalar('{} validation vs samples'.format(key),
833
834
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
835
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
836
                writer.add_scalar('{} validation ppl'.format(key), ppl,
837
                                  iteration)
mohammad's avatar
mohammad committed
838
                writer.add_scalar('{} validation ppl vs samples'.format(key),
839
                                  ppl, args.consumed_train_samples)
840

841
842
843
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

844
    length = len(string) + 1
845
846
847
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
848
849


Vijay Korthikanti's avatar
Vijay Korthikanti committed
850
def cyclic_iter(iter):
851
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
852
        for x in iter:
853
854
            yield x

855
856
857
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
858
    args = get_args()
859

860
861
862
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
863
864
865

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
866
867
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
868
        args.consumed_train_samples = args.iteration * args.global_batch_size
869
    if args.iteration > 0 and args.consumed_valid_samples == 0:
870
871
872
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
873

874
    # Data loader only on rank 0 of each model parallel group.
875
    if mpu.get_tensor_model_parallel_rank() == 0:
876
877

        # Number of train/valid/test samples.
878
879
880
881
882
883
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
884
        test_iters = args.eval_iters
885
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
886
887
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
888
889
890
891
892
893
894
895
896
897
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
898
899
900
901
902
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
903
904
905
906
907
908
909
910
911
912
913
914
915

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
916
917
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
918
919
920
921
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
922

923
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
924
925
926
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

927
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
928
929
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
930
931
932
    else:
        train_data_iterator = None

933
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
934
935
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
936
    else:
937
        valid_data_iterator = None
938

939
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
940
941
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
942
943
944
    else:
        test_data_iterator = None

945
    return train_data_iterator, valid_data_iterator, test_data_iterator