training.py 38.9 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103

104
105
106
107
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
108
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
109
110
111
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
112
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
113
114
115
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

116
    args = get_args()
Mohammad's avatar
Mohammad committed
117
    timers = get_timers()
118
119

    # Model, optimizer, and learning rate.
120
    timers('model-and-optimizer-setup').start()
121
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
122
                                                               model_type)
123
    timers('model-and-optimizer-setup').stop()
124
125
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
126
127

    # Data stuff.
128
129
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
130
        all_data_iterators = [
131
132
133
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
134
135
136
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
137
138
139
140
141
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
142
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
143
144

    # Print setup timing.
145
146
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
147
    print_rank_0('training ...')
148
149

    iteration = 0
150
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
151
        iteration = train(forward_step_func,
152
                          model, optimizer, opt_param_scheduler,
153
154
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
155
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
156

157
158
159
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
160
                                   valid_data_iterator, model,
161
162
                                   iteration, process_non_loss_data_func,
                                   False)
163
164

    if args.save and iteration != 0:
165
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
166
167
168
169
170
171

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
172
173
                                   0, process_non_loss_data_func,
                                   True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
    # Build model.
211
212
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
213
214
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
215
216
217
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
218
219
220
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
221
            this_model = model_provider_func(
222
223
224
                pre_process=pre_process,
                post_process=post_process
            )
225
            this_model.model_type = model_type
226
            model.append(this_model)
227
    else:
228
229
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
255

256
257
    if not isinstance(model, list):
        model = [model]
258

259
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
260
261
262
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
263
264
265
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
266

267
268
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
269
        print(' > number of parameters on (tensor, pipeline) '
270
              'model parallel rank ({}, {}): {}'.format(
271
272
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
273
274
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
275
276

    # GPU allocation.
277
278
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
279
280

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
283

284
285
286
287
288
289
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
290

291
292
293
294
295
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
296
297
298
299
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
300
301
302
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
303

304
    return model
305
306


307
def get_optimizer_param_scheduler(optimizer):
308
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

311
312
313
314
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
317
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
319
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
321
322
323
324
325
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
326
        update_train_iters(args)
327
328
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
331
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
333
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_samples
335
    else:
336
337
338
        raise Exception(
            'either train-iters or train-samples should be provided.')

339
    opt_param_scheduler = OptimizerParamScheduler(
340
        optimizer,
341
        max_lr=args.lr,
342
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
343
344
345
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
        wd_incr_style=args.weight_decay_incr_style,
350
351
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
352

353
    return opt_param_scheduler
354
355


356
357
358
359
360
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
361
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
362
    args = get_args()
363

364
    model = get_model(model_provider_func, model_type)
365

366
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
                                   (torchDDP, LocalDDP, Float16Module))
368
369
    optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
                                       scale_lr_cond, lr_mult)
370

371
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
372
373

    if args.load is not None:
374
375
376
377
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
378
        timers('load-checkpoint').start()
379
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
380
        torch.distributed.barrier()
381
382
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
383
384
385
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
386
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
387
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
388
389
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
390
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
391
392
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
393
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
394
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
395
396
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
397

398
    return model, optimizer, opt_param_scheduler
399
400


401
def train_step(forward_step_func, data_iterator,
402
               model, optimizer, opt_param_scheduler):
403
404
405
406
407
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
408
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
409
410
        for partition in model:
            partition.zero_grad_buffer()
411
    optimizer.zero_grad()
412

413
414
415
    # >>>
    # Forward pass.
    # <<<
416
    forward_backward_func = get_forward_backward_func()
417
418
419
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
420

421
422
423
    # >>>
    # Empty unused memory.
    # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
424
    if args.empty_unused_memory_level >= 1:
425
426
        torch.cuda.empty_cache()

427
428
429
    # >>>
    # Reduce gradients. (with distributed optimizer option, optimizer
    # now responsible for reducing gradients)
430
    optimizer.reduce_gradients(model)
431
432
433
    # <<<

    # >>>
434
435
    # from lutil import pax
    # pax(0, {"optimizer": optimizer})
436
    # <<<
437

438
439
    # Update parameters.
    timers('optimizer').start()
440
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
441
442
    timers('optimizer').stop()

443
444
445
446
447
448
    # >>>
    # Gather params gradients. (with distributed optimizer option, optimizer
    # now responsible for gathering updated params)
    optimizer.gather_params()
    # <<<

449
    # Update learning rate.
450
    if update_successful:
451
452
453
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
454
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
455
        skipped_iter = 0
456
457
458
    else:
        skipped_iter = 1

459
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
460
    if args.empty_unused_memory_level >= 2:
461
462
        torch.cuda.empty_cache()

463
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
464
465
466
467
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
468
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
469
470
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
471
472


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
473
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
474
                 loss_scale, report_memory_flag, skipped_iter,
475
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
476
477
478
479
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
480

mohammad's avatar
mohammad committed
481
482
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
483
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
484
485
486
487
488
489
490
491
492
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
493
494
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
495
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
496
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
497
    for key in loss_dict:
mohammad's avatar
mohammad committed
498
        if not skipped_iter:
499
500
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
501
502
503
504
505
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
506
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
507
508
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
510
511

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
512

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
513
514
515
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
516
517
518
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
519
    add_to_logging('forward-backward-send-forward-backward-recv')
520
521
522
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
523
    add_to_logging('backward-send-forward-recv')
524
    add_to_logging('backward-send-backward-recv')
525
    add_to_logging('backward-params-all-reduce')
526
    add_to_logging('backward-embedding-all-reduce')
527
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
528
    add_to_logging('optimizer-unscale-and-check-inf')
529
530
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
532
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
533

mohammad's avatar
mohammad committed
534
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
535
536
537
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
538
539
540
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
541
    # Tensorboard values.
542
543
544
545
546
547
548
549
550
551
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
552
        for key in loss_dict:
mohammad's avatar
mohammad committed
553
554
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
555
                              args.consumed_train_samples)
556
557
558
559
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
560
561
562
563
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
564
565
566
567
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
568
569
570
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
571
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
572
573
574
575
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
576
577
578
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
596
597

    if iteration % args.log_interval == 0:
598
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
599
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
600
        if writer:
601
602
603
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
604
605
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
606
        log_string += ' consumed samples: {:12d} |'.format(
607
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
609
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
611
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
613
614
615
616
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
617
618
619
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
620
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
621
622
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
623
624
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
625
626
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
627
628
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
629
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
630
631
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
632
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
633
        total_loss_dict[nan_iters_key] = 0
634
        print_rank_last(log_string)
635
636
637
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
638
639
640
641
642
643
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


644
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
645
646
647
648
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
649
    timers('save-checkpoint').start()
650
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
651
    torch.distributed.barrier()
652
653
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
654
655


656
def train(forward_step_func, model, optimizer, opt_param_scheduler,
657
658
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
659
    """Train the model function."""
Mohammad's avatar
Mohammad committed
660
661
    args = get_args()
    timers = get_timers()
662

663
664
665
    # Write args to tensorboard
    write_args_to_tensorboard()

666
    # Turn on training mode which enables dropout.
667
668
    for model_module in model:
        model_module.train()
669
670
671
672
673
674
675

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

676
    timers('interval-time').start()
677
    print_datetime('before the start of training step')
678
679
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
680
        update_num_microbatches(args.consumed_train_samples)
681
682
683
684
685
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
686
                       opt_param_scheduler)
687
        iteration += 1
688
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
689
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
690
                                       get_num_microbatches()
691
692

        # Logging.
693
        loss_scale = optimizer.get_loss_scale().item()
694
695
696
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
697
698
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
699
                                          iteration, loss_scale,
700
                                          report_memory_flag, skipped_iter,
701
                                          grad_norm, params_norm, num_zeros_in_grad)
702
703

        # Autoresume
704
705
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
706
            check_adlr_autoresume_termination(iteration, model, optimizer,
707
                                              opt_param_scheduler)
708
709
710
711
712
713

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
714
                                       valid_data_iterator, model,
715
716
                                       iteration, process_non_loss_data_func,
                                       False)
717

718
719
        # Checkpointing
        saved_checkpoint = False
720
721
722
723
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
724
                                         opt_param_scheduler)
725
726
727
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

728
729
730
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
731
                                     opt_param_scheduler)
732
733
            saved_checkpoint = True

734
735
736
737
738
739
740
741
742
743
744
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
745
                                             opt_param_scheduler)
746
                print_datetime('exiting program after {} minutes'.format(train_time))
747
748
                sys.exit()

749
        # Exiting based on iterations
750
        if args.exit_interval and iteration % args.exit_interval == 0:
751
752
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
753
                                         opt_param_scheduler)
754
            torch.distributed.barrier()
755
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
756
            sys.exit()
757

758

mohammad's avatar
mohammad committed
759
    return iteration
760
761


762
763
764
765
766
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
767
    """Evaluation."""
Mohammad's avatar
Mohammad committed
768
    args = get_args()
769
770

    # Turn on evaluation mode which disables dropout.
771
772
    for model_module in model:
        model_module.eval()
773
774
775
776
777
778
779
780
781
782

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
783

784
            forward_backward_func = get_forward_backward_func()
785
786
787
788
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

789
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
790
            if args.empty_unused_memory_level >= 1:
791
792
                torch.cuda.empty_cache()

793
794
795
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
796
                    for key in loss_dict:
797
798
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
799

800
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
801
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
802
                                           * get_num_microbatches()
803
804
805
806
807
808
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

809
    # Move model back to the train mode.
810
811
    for model_module in model:
        model_module.train()
812
813

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
814
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
815

816
    return total_loss_dict, collected_non_loss_data
817
818
819

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
820
821
                               iteration, process_non_loss_data_func,
                               verbose=False):
822
    """Helper function to evaluate and dump results on screen."""
823
    args = get_args()
Mohammad's avatar
Mohammad committed
824
825
    writer = get_tensorboard_writer()

826
827
828
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
829
830
831
832
833
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
834
        if writer:
mohammad's avatar
mohammad committed
835
            writer.add_scalar('{} validation'.format(key),
836
837
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
838
            writer.add_scalar('{} validation vs samples'.format(key),
839
840
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
841
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
842
                writer.add_scalar('{} validation ppl'.format(key), ppl,
843
                                  iteration)
mohammad's avatar
mohammad committed
844
                writer.add_scalar('{} validation ppl vs samples'.format(key),
845
                                  ppl, args.consumed_train_samples)
846

847
848
849
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

850
    length = len(string) + 1
851
852
853
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
854
855


Vijay Korthikanti's avatar
Vijay Korthikanti committed
856
def cyclic_iter(iter):
857
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
858
        for x in iter:
859
860
            yield x

861
862
863
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
864
    args = get_args()
865

866
867
868
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
869
870
871

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
872
873
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
874
        args.consumed_train_samples = args.iteration * args.global_batch_size
875
    if args.iteration > 0 and args.consumed_valid_samples == 0:
876
877
878
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
879

880
    # Data loader only on rank 0 of each model parallel group.
881
    if mpu.get_tensor_model_parallel_rank() == 0:
882
883

        # Number of train/valid/test samples.
884
885
886
887
888
889
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
890
        test_iters = args.eval_iters
891
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
892
893
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
894
895
896
897
898
899
900
901
902
903
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
904
905
906
907
908
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
909
910
911
912
913
914
915
916
917
918
919
920
921

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
922
923
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
924
925
926
927
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
928

929
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
930
931
932
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

933
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
934
935
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
936
937
938
    else:
        train_data_iterator = None

939
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
940
941
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
942
    else:
943
        valid_data_iterator = None
944

945
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
946
947
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
948
949
950
    else:
        test_data_iterator = None

951
    return train_data_iterator, valid_data_iterator, test_data_iterator