"vscode:/vscode.git/clone" did not exist on "644ed409d1f0f951c07ed1e82690dfd1f6b83c60"
training.py 35.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
42
from megatron.initialize import initialize_megatron
43
from megatron.initialize import write_args_to_tensorboard
44
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
47
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
49
from megatron.utils import calc_params_l2_norm
50
from megatron.schedules import forward_backward_no_pipelining
51
from megatron.schedules import forward_backward_pipelining_without_interleaving
52
from megatron.schedules import forward_backward_pipelining_with_interleaving
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
67
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
82
83
84
85
86
87
88
89
90
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
91
92
    """

93
    # Initalize and get arguments, timers, and Tensorboard writer.
94
95
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
96

97
98
99
100
101
102
103
104
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
105
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
106
107
108
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

109
    args = get_args()
Mohammad's avatar
Mohammad committed
110
    timers = get_timers()
111
112

    # Model, optimizer, and learning rate.
113
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
114
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
115
    timers('model-and-optimizer-setup').stop()
116
117
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
118
119

    # Data stuff.
120
121
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
122
        all_data_iterators = [
123
124
125
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
126
127
128
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
129
130
131
132
133
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
134
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
135
136

    # Print setup timing.
137
138
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
139
    print_rank_0('training ...')
140
141

    iteration = 0
142
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
143
144
145
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
146
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
147

148
149
150
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
151
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
152
                                   iteration, False)
153
154

    if args.save and iteration != 0:
155
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
156
157
158
159
160
161

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
162
                                   0, True)
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
180
181
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
182
183
            iterations += 1
        # Reset
184
        update_num_microbatches(0, consistency_check=False)
185
186
187
188
189
190
191
192
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

193

Mohammad's avatar
Mohammad committed
194
def get_model(model_provider_func):
195
    """Build the model."""
Mohammad's avatar
Mohammad committed
196
    args = get_args()
197
198

    # Build model on cpu.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    pre_process = mpu.is_pipeline_first_stage()
    post_process = mpu.is_pipeline_last_stage()

    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            m = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
            model.append(m)
    else:
        model = model_provider_func(
            pre_process=pre_process,
            post_process=post_process
        )

218
219
    if not isinstance(model, list):
        model = [model]
220

221
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
222
223
224
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
225
226
227
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
228

229
230
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
231
        print(' > number of parameters on (tensor, pipeline) '
232
              'model parallel rank ({}, {}): {}'.format(
233
234
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
235
236
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
237
238

    # GPU allocation.
239
240
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
241
242

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
243
244
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
245
246
247

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
248
249
250
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
251
        return model
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
252
    
253
    if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
254
255
256
257
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_ddp)
                 for model_module in model]
258
259
        return model

260
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
261
                              'Exiting.'.format(args.DDP_impl))
262
263


Mohammad's avatar
Mohammad committed
264
def get_learning_rate_scheduler(optimizer):
265
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
266
    args = get_args()
267

268
269
270
271
272
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
273
274
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
275
276
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
277
278
279
280
281
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
282
        update_train_iters(args)
283
284
285
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
286
287
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
288
289
        else:
            warmup_steps = args.lr_warmup_samples
290
    else:
291
292
293
        raise Exception(
            'either train-iters or train-samples should be provided.')

294
295
    lr_scheduler = AnnealingLR(
        optimizer,
296
        max_lr=args.lr,
297
        min_lr=args.min_lr,
298
299
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
300
        decay_style=args.lr_decay_style,
301
302
303
304
305
306
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
307
def setup_model_and_optimizer(model_provider_func):
308
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

Mohammad's avatar
Mohammad committed
311
    model = get_model(model_provider_func)
312

313
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
314
                                   (torchDDP, LocalDDP, Float16Module))
315
316
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
317
    lr_scheduler = get_learning_rate_scheduler(optimizer)
318
319

    if args.load is not None:
320
321
322
323
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
324
        timers('load-checkpoint').start()
325
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
326
        torch.distributed.barrier()
327
328
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
329
330
331
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
332
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
333
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
334
335
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
336
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
337
338
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
339
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
340
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
341
342
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
343

344
345
346
    return model, optimizer, lr_scheduler


347
348
349
350
351
352
353
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
354
355
356
357
358
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()
359
360

    if mpu.get_pipeline_model_parallel_world_size() > 1:
361
362
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
363
364
365
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
366
        else:
367
            forward_backward_func = forward_backward_pipelining_without_interleaving
368
    else:
369
370
371
372
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
373
374
375

    # All-reduce if needed.
    if args.DDP_impl == 'local':
376
        timers('backward-params-all-reduce').start()
377
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
378
            model_module.allreduce_gradients()
379
        timers('backward-params-all-reduce').stop()
380

381
382
383
384
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
385
    timers('backward-embedding-all-reduce').start()
386
387
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
388
            mpu.get_pipeline_model_parallel_world_size() > 1:
389
390
391
392
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
393
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
394
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
395

396
397
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
398
399
400
401
402
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
403
    timers('backward-embedding-all-reduce').stop()
404

405
406
    # Update parameters.
    timers('optimizer').start()
407
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
408
409
410
    timers('optimizer').stop()

    # Update learning rate.
411
    if update_successful:
412
413
414
415
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
416
        skipped_iter = 0
417
418
419
    else:
        skipped_iter = 1

420
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
421
422
423
424
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
425
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
426
427
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
428
429


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
430
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
431
                 loss_scale, report_memory_flag, skipped_iter,
432
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
433
434
435
436
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
437

mohammad's avatar
mohammad committed
438
439
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
440
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
441
442
443
444
445
446
447
448
449
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
450
451
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
452
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
453
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
454
    for key in loss_dict:
mohammad's avatar
mohammad committed
455
        if not skipped_iter:
456
457
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
458
459
460
461
462
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
463
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
464
465
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
466
467
468

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
469

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
470
471
472
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
473
474
475
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
476
    add_to_logging('forward-backward-send-forward-backward-recv')
477
478
479
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
480
    add_to_logging('backward-send-forward-recv')
481
    add_to_logging('backward-send-backward-recv')
482
    add_to_logging('backward-params-all-reduce')
483
    add_to_logging('backward-embedding-all-reduce')
484
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
485
    add_to_logging('optimizer-unscale-and-check-inf')
486
487
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
488
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
489
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490

mohammad's avatar
mohammad committed
491
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
492
493
494
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
495
496
497
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
498
    # Tensorboard values.
499
500
501
502
503
504
505
506
507
508
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
        for key in loss_dict:
mohammad's avatar
mohammad committed
510
511
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
512
                              args.consumed_train_samples)
513
514
515
516
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
517
518
519
520
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
521
522
523
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
524
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
525
526
527
528
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
529
530
531
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
532
533

    if iteration % args.log_interval == 0:
534
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
535
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536
        if writer and torch.distributed.get_rank() == 0:
537
538
539
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
540
541
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
542
        log_string += ' consumed samples: {:12d} |'.format(
543
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
544
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
545
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
546
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
547
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
548
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
549
550
551
552
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
553
554
555
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
556
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
557
558
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
559
560
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
561
562
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
563
564
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
565
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
566
567
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
568
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
569
        total_loss_dict[nan_iters_key] = 0
570
        print_rank_last(log_string)
571
572
573
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
574
575
576
577
578
579
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


580
581
582
583
584
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
585
    timers('save-checkpoint').start()
586
587
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
588
589
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
590
591


592
def train(forward_step_func, model, optimizer, lr_scheduler,
593
          train_data_iterator, valid_data_iterator):
594
    """Train the model function."""
Mohammad's avatar
Mohammad committed
595
596
    args = get_args()
    timers = get_timers()
597

598
599
600
    # Write args to tensorboard
    write_args_to_tensorboard()

601
    # Turn on training mode which enables dropout.
602
603
    for model_module in model:
        model_module.train()
604
605
606
607
608
609
610

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

611
    timers('interval-time').start()
612
    print_datetime('before the start of training step')
613
614
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
615
        update_num_microbatches(args.consumed_train_samples)
616
617
618
619
620
621
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
622
        iteration += 1
623
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
624
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
625
                                       get_num_microbatches()
626
627

        # Logging.
628
        loss_scale = optimizer.get_loss_scale().item()
629
630
631
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
632
633
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
634
                                          iteration, loss_scale,
635
                                          report_memory_flag, skipped_iter,
636
                                          grad_norm, params_norm, num_zeros_in_grad)
637
638

        # Autoresume
639
640
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
641
            check_adlr_autoresume_termination(iteration, model, optimizer,
642
                                              lr_scheduler)
643
644
645
646
647
648

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
649
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
650
                                       iteration, False)
651

652
653
654
655
656
657
658
659
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

660
661
662
663
664
665
666
667
668
669
670
671
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
672
                print_datetime('exiting program after {} minutes'.format(train_time))
673
674
                sys.exit()

675
        # Exiting based on iterations
676
        if args.exit_interval and iteration % args.exit_interval == 0:
677
678
679
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
680
            torch.distributed.barrier()
681
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
682
            sys.exit()
683

684

mohammad's avatar
mohammad committed
685
    return iteration
686
687


Mohammad's avatar
Mohammad committed
688
def evaluate(forward_step_func, data_iterator, model, verbose=False):
689
    """Evaluation."""
Mohammad's avatar
Mohammad committed
690
    args = get_args()
691
692

    # Turn on evaluation mode which disables dropout.
693
694
    for model_module in model:
        model_module.eval()
695
696
697
698
699
700
701
702
703
704

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
705

706
707
708
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
709
                else:
710
                    forward_backward_func = forward_backward_pipelining_without_interleaving
711
712
713
714
715
716
717
718
719
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
720
                    for key in loss_dict:
721
722
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
723

724
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
725
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
726
                                           * get_num_microbatches()
727
    # Move model back to the train mode.
728
729
    for model_module in model:
        model_module.train()
730
731

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
732
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
733
734
735
736
737

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
738
                               iteration, verbose=False):
739
    """Helper function to evaluate and dump results on screen."""
740
    args = get_args()
Mohammad's avatar
Mohammad committed
741
742
743
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
744
745
746
747
748
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
749
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
750
            writer.add_scalar('{} validation'.format(key),
751
752
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
753
            writer.add_scalar('{} validation vs samples'.format(key),
754
755
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
756
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
757
                writer.add_scalar('{} validation ppl'.format(key), ppl,
758
                                  iteration)
mohammad's avatar
mohammad committed
759
                writer.add_scalar('{} validation ppl vs samples'.format(key),
760
                                  ppl, args.consumed_train_samples)
761
762

    length = len(string) + 1
763
764
765
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
766
767


Vijay Korthikanti's avatar
Vijay Korthikanti committed
768
def cyclic_iter(iter):
769
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
770
        for x in iter:
771
772
            yield x

773
774
775
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
776
    args = get_args()
777

778
779
780
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
781
782
783

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
784
785
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
786
        args.consumed_train_samples = args.iteration * args.global_batch_size
787
    if args.iteration > 0 and args.consumed_valid_samples == 0:
788
789
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
790
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
791
            args.eval_iters * args.global_batch_size
792

793
    # Data loader only on rank 0 of each model parallel group.
794
    if mpu.get_tensor_model_parallel_rank() == 0:
795
796

        # Number of train/valid/test samples.
797
798
799
800
801
802
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
803
        test_iters = args.eval_iters
804
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
805
806
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
807
808
809
810
811
812
813
814
815
816
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
817
818
819
820
821
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
822
823
824
825
826
827
828
829
830
831
832
833
834

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
835
836
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
837
838
839
840
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
841

842
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
843
844
845
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

846
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
847
848
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
849
850
851
    else:
        train_data_iterator = None

852
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
853
854
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
855
    else:
856
        valid_data_iterator = None
857

858
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
859
860
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
861
862
863
    else:
        test_data_iterator = None

864
    return train_data_iterator, valid_data_iterator, test_data_iterator