training.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
25

import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_timers
from megatron import get_tensorboard_writer
29
from megatron import mpu
Mohammad's avatar
Mohammad committed
30
31
32
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
33
34
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
35
from megatron.initialize import initialize_megatron
36
37
38
39
40
41
42
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
from megatron.utils import check_adlr_autoresume_termination
from megatron.utils import report_memory


Mohammad's avatar
Mohammad committed
43
44
def pretrain(train_val_test_data_provider, model_provider, forward_step_func,
             extra_args_provider=None, args_defaults={}):
45
46
47
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
48
49
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
50
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
51
        4) train the modle using the forward_step_func.
52
53

    Arguments:
Mohammad's avatar
Mohammad committed
54
55
56
57
58
59
60
61
62
63
64
65
66
        train_val_test_data_provider: a function that builds datasets
            and returns `train, val, test` dataloaders.
        model_provider: a function that  returns a vanilla version of the
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
67
68
    """

69
    # Initalize and get arguments, timers, and Tensorboard writer.
Mohammad's avatar
Mohammad committed
70
71
72
73
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
    args = get_args()
    timers = get_timers()
74
75

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
76
77
78
79
80
81
82
83
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()

    # Data stuff.
    timers('train/valid/test dataset').start()
    train_data, val_data, test_data = train_val_test_data_provider()
    timers('train/valid/test dataset').stop()
84
85

    # Train, validation, and test data.
Mohammad's avatar
Mohammad committed
86
    timers('train/valid/test dataloader').start()
87
88
89
    train_data_iterator, val_data_iterator, \
        test_data_iterator = get_train_val_test_data_iterators(train_data,
                                                               val_data,
Mohammad's avatar
Mohammad committed
90
91
92
93
94
95
96
97
                                                               test_data)
    timers('train/valid/test dataloader').stop()

    # Print setup timing.
    print_rank_0('done with setups ...')
    timers.log(['model and optimizer', 'train/valid/test dataset',
                'train/valid/test dataloader'])
    print_rank_0('training ...')
98
99

    iteration = 0
100
    if args.do_train and args.train_iters > 0:
101
        if args.do_train:
Mohammad's avatar
Mohammad committed
102
103
104
105
            iteration, _ = train(forward_step_func,
                                 model, optimizer, lr_scheduler,
                                 train_data_iterator, val_data_iterator)

106
107
108
109
110

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   val_data_iterator, model,
Mohammad's avatar
Mohammad committed
111
                                   iteration, False)
112
113

    if args.save and iteration != 0:
114
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
115
116
117
118
119
120

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
121
                                   0, True)
122
123


Mohammad's avatar
Mohammad committed
124
def get_model(model_provider_func):
125
    """Build the model."""
Mohammad's avatar
Mohammad committed
126
    args = get_args()
127
128

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
129
    model = model_provider_func()
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
147
148
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
149
150
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
151
        model = LocalDDP(model)
152
153
        return model

154
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
155
                 'Exiting.'.format(args.DDP_impl))
Mohammad's avatar
Mohammad committed
156
    sys.exit()
157
158


Mohammad's avatar
Mohammad committed
159
def get_optimizer(model):
160
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
161
    args = get_args()
162
163

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
164
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
165
166
167
168
169
170
171
172
173
174
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
Mohammad's avatar
Mohammad committed
175
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay)
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
190
def get_learning_rate_scheduler(optimizer):
191
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
192
    args = get_args()
193
194
195
196
197
198
199

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
200
    init_step = 0
201
202
203
204
205
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
206
        total_iters=num_iters,
207
208
209
210
211
212
213
214
215
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
216
def setup_model_and_optimizer(model_provider_func):
217
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
218
    args = get_args()
219

Mohammad's avatar
Mohammad committed
220
221
222
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
223
224

    if args.load is not None:
225
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
226
227
228
229
230
231
    else:
        args.iteration = 0

    return model, optimizer, lr_scheduler


Mohammad's avatar
Mohammad committed
232
def backward_step(optimizer, model, loss):
233
    """Backward step."""
Mohammad's avatar
Mohammad committed
234
235
    args = get_args()
    timers = get_timers()
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()

    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()

    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)


Mohammad's avatar
Mohammad committed
263
264
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
265
    """Single training step."""
Mohammad's avatar
Mohammad committed
266
267
    args = get_args()
    timers = get_timers()
268
269
270

    # Forward model for one step.
    timers('forward').start()
Mohammad's avatar
Mohammad committed
271
    loss, loss_reduced = forward_step_func(data_iterator, model)
272
273
274
275
    timers('forward').stop()

    # Calculate gradients, reduce across processes, and clip.
    timers('backward').start()
Mohammad's avatar
Mohammad committed
276
    backward_step(optimizer, model, loss)
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return loss_reduced, skipped_iter


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
294
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
Mohammad's avatar
Mohammad committed
295
296
297
298
299
                 loss_scale, report_memory_flag):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    # Update losses.
    for key in loss_dict:
        total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]

    # Logging.
    timers_to_log = []
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('allreduce')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        for key in total_loss_dict:
            avg = total_loss_dict[key].item() / args.log_interval
            log_string += ' {}: {:.6E} |'.format(key, avg)
            total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


354
def train(forward_step_func, model, optimizer, lr_scheduler,
Mohammad's avatar
Mohammad committed
355
          train_data_iterator, val_data_iterator):
356
    """Train the model function."""
Mohammad's avatar
Mohammad committed
357
358
    args = get_args()
    timers = get_timers()
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
377
                                             lr_scheduler)
378
379
380
381
        skipped_iters += skipped_iter
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
382
383
384
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
386
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
387
                                          iteration, loss_scale,
Mohammad's avatar
Mohammad committed
388
                                          report_memory_flag)
389
390

        # Autoresume
391
392
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
393
            check_adlr_autoresume_termination(iteration, model, optimizer,
394
                                              lr_scheduler)
395
396
397
398

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
399
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
400
401
402
403
404
405

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
Mohammad's avatar
Mohammad committed
406
407
                                       val_data_iterator, model,
                                       iteration, False)
408
409
410
411
412

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
413
414
415
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
416
417
418
419

    return iteration, skipped_iters


Mohammad's avatar
Mohammad committed
420
def evaluate(forward_step_func, data_iterator, model, verbose=False):
421
    """Evaluation."""
Mohammad's avatar
Mohammad committed
422
    args = get_args()
423
424
425
426
427
428
429
430
431
432
433
434
435
436

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
Mohammad's avatar
Mohammad committed
437
            _, loss_dict = forward_step_func(data_iterator, model)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
                                       loss_dict[key]
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
453
                               iteration, verbose=False):
454
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
455
456
457
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


Mohammad's avatar
Mohammad committed
475
def get_train_val_test_data_iterators(train_data, val_data, test_data):
476
    """Build train/validation/test iterators"""
Mohammad's avatar
Mohammad committed
477
    args = get_args()
478

Mohammad's avatar
Mohammad committed
479
480
481
482
483
484
485
486
487
488
489
490
491
    # Shift the start iterations.
    if train_data is not None:
        train_data.batch_sampler.start_iter = args.iteration % \
                                              len(train_data)
        print_rank_0('setting training data start iteration to {}'.
                     format(train_data.batch_sampler.start_iter))
    if val_data is not None:
        start_iter_val = (args.iteration // args.eval_interval) * \
                         args.eval_iters
        val_data.batch_sampler.start_iter = start_iter_val % \
                                            len(val_data)
        print_rank_0('setting validation data start iteration to {}'.
                     format(val_data.batch_sampler.start_iter))
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    if train_data is not None:
        train_data_iterator = iter(train_data)
    else:
        train_data_iterator = None

    if val_data is not None:
        val_data_iterator = iter(val_data)
    else:
        val_data_iterator = None

    if test_data is not None:
        test_data_iterator = iter(test_data)
    else:
        test_data_iterator = None

    return train_data_iterator, val_data_iterator, test_data_iterator