training.py 20.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

25
from megatron import get_args, print_rank_0
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
28
from megatron import mpu
Mohammad's avatar
Mohammad committed
29
30
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
31
32
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
33
from megatron.initialize import initialize_megatron
34
35
36
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
37
from megatron.model.realm_model import ICTBertModel
38
from megatron.utils import check_adlr_autoresume_termination
39
from megatron.utils import make_data_loader
40
from megatron.utils import report_memory
41
42


43
def pretrain(train_valid_test_dataset_provider, model_provider,
44
             forward_step_func, extra_args_provider=None, args_defaults={}):
45
46
47
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
48
49
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
50
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
51
        4) train the modle using the forward_step_func.
52
53

    Arguments:
54
55
56
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
57
58
59
60
61
62
63
64
65
66
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
67
68
    """

69
    # Initalize and get arguments, timers, and Tensorboard writer.
70
71
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
72

73
    args = get_args()
Mohammad's avatar
Mohammad committed
74
    timers = get_timers()
75
76

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
77
78
79
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
80
81

    # Data stuff.
82
83
84
85
86
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
87
88
89

    # Print setup timing.
    print_rank_0('done with setups ...')
90
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
91
    print_rank_0('training ...')
92
93

    iteration = 0
94
    if args.do_train and args.train_iters > 0:
95
96
        iteration, _ = train(forward_step_func,
                             model, optimizer, lr_scheduler,
Neel Kant's avatar
Neel Kant committed
97
                             train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
98

99
100
101
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
102
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
103
                                   iteration, False)
104
105

    if args.save and iteration != 0:
106
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
107
108
109
110
111
112

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
113
                                   0, True)
114
115


Mohammad's avatar
Mohammad committed
116
def get_model(model_provider_func):
117
    """Build the model."""
Mohammad's avatar
Mohammad committed
118
    args = get_args()
119
120

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
121
    model = model_provider_func()
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
139
140
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
141
142
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
143
        model = LocalDDP(model)
144
145
        return model

146
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
147
                              'Exiting.'.format(args.DDP_impl))
148
149


Mohammad's avatar
Mohammad committed
150
def get_optimizer(model):
151
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
152
    args = get_args()
153
154

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
155
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
156
157
158
159
160
161
162
163
164
165
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
Mohammad's avatar
Mohammad committed
166
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay)
167
168
169
170
171
172
173
174

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
175
                                       'min_scale': args.min_scale,
176
177
178
179
180
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
181
def get_learning_rate_scheduler(optimizer):
182
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
183
    args = get_args()
184
185
186
187
188
189
190

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
191
    init_step = 0
192
193
194
195
196
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
197
        total_iters=num_iters,
198
199
200
201
202
203
204
205
206
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
207
def setup_model_and_optimizer(model_provider_func):
208
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
209
    args = get_args()
210

Mohammad's avatar
Mohammad committed
211
212
213
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
214
215

    if args.load is not None:
216
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
217
218
219
    else:
        args.iteration = 0

220
221
    unwrapped_model = model.module.module
    if args.iteration == 0 and hasattr(unwrapped_model, 'init_state_dict_from_bert'):
222
        print("Initializing ICT from pretrained BERT model", flush=True)
223
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
224

225
226
227
    return model, optimizer, lr_scheduler


Mohammad's avatar
Mohammad committed
228
def backward_step(optimizer, model, loss):
229
    """Backward step."""
Mohammad's avatar
Mohammad committed
230
231
    args = get_args()
    timers = get_timers()
232
233

    # Backward pass.
234
    optimizer.zero_grad(set_grads_to_None=True)
235
236
237
238
239
240
241
242
243
244
245
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()
246

247
248
249
    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()
250

251
252
253
254
255
256
257
258
    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)


Mohammad's avatar
Mohammad committed
259
260
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
261
    """Single training step."""
Mohammad's avatar
Mohammad committed
262
263
    args = get_args()
    timers = get_timers()
264
265
266

    # Forward model for one step.
    timers('forward').start()
Mohammad's avatar
Mohammad committed
267
    loss, loss_reduced = forward_step_func(data_iterator, model)
268
269
    timers('forward').stop()

270
    # Calculate gradients, reduce across processes, and clip.
271
    timers('backward').start()
Mohammad's avatar
Mohammad committed
272
    backward_step(optimizer, model, loss)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return loss_reduced, skipped_iter


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
290
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
Mohammad's avatar
Mohammad committed
291
292
293
294
295
                 loss_scale, report_memory_flag):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
296
297
298
299
300
301
302

    # Update losses.
    for key in loss_dict:
        total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
303

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('allreduce')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        for key in total_loss_dict:
            avg = total_loss_dict[key].item() / args.log_interval
            log_string += ' {}: {:.6E} |'.format(key, avg)
            total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


351
def train(forward_step_func, model, optimizer, lr_scheduler,
352
          train_data_iterator, valid_data_iterator):
353
    """Train the model function."""
Mohammad's avatar
Mohammad committed
354
355
    args = get_args()
    timers = get_timers()
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
374
                                             lr_scheduler)
375
376
377
378
        skipped_iters += skipped_iter
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
379
380
381
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
382
383
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
384
                                          iteration, loss_scale,
Mohammad's avatar
Mohammad committed
385
                                          report_memory_flag)
386
387

        # Autoresume
388
389
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
390
            check_adlr_autoresume_termination(iteration, model, optimizer,
391
                                              lr_scheduler)
392
393
394
395

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
396
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
397
398
399
400
401
402

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
403
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
404
                                       iteration, False)
405
406

        if args.exit_interval and iteration % args.exit_interval == 0:
407
            torch.distributed.barrier()
408
409
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
410
411
412
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
413
414
415
416

    return iteration, skipped_iters


Mohammad's avatar
Mohammad committed
417
def evaluate(forward_step_func, data_iterator, model, verbose=False):
418
    """Evaluation."""
Mohammad's avatar
Mohammad committed
419
    args = get_args()
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
Mohammad's avatar
Mohammad committed
434
            _, loss_dict = forward_step_func(data_iterator, model)
435
436
437
            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
Neel Kant's avatar
Neel Kant committed
438
                    loss_dict[key]
439
440
441
442
443
444
445
446
447
448
449
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
450
                               iteration, verbose=False):
451
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
452
453
454
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


472
473
474
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
475
    args = get_args()
476

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
        global_batch_size = args.batch_size * data_parallel_size

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Mohammad's avatar
Mohammad committed
525
    # Shift the start iterations.
526
527
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
Neel Kant's avatar
Neel Kant committed
528
            len(train_dataloader)
Mohammad's avatar
Mohammad committed
529
        print_rank_0('setting training data start iteration to {}'.
530
531
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
Mohammad's avatar
Mohammad committed
532
        start_iter_val = (args.iteration // args.eval_interval) * \
Neel Kant's avatar
Neel Kant committed
533
            args.eval_iters
534
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
Neel Kant's avatar
Neel Kant committed
535
            len(valid_dataloader)
Mohammad's avatar
Mohammad committed
536
        print_rank_0('setting validation data start iteration to {}'.
537
                     format(valid_dataloader.batch_sampler.start_iter))
538

539
540
541
    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
542
543
544
    else:
        train_data_iterator = None

545
546
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
547
    else:
548
        valid_data_iterator = None
549

550
551
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
552
553
554
    else:
        test_data_iterator = None

555
    return train_data_iterator, valid_data_iterator, test_data_iterator