training.py 39.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
47
48
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56

57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
def pretrain(train_valid_test_dataset_provider,
65
             model_provider,
66
             model_type,
67
             forward_step_func,
68
             process_non_loss_data_func=None,
69
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
70
             args_defaults={}):
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
74
75
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
76
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
77
        4) train the modle using the forward_step_func.
78
79

    Arguments:
80
81
82
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
84
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
85
86
87
88
89
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
90
91
92
93
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
94
95
96
97
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
98
99
    """

100
    # Initalize and get arguments, timers, and Tensorboard writer.
101
102
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
103

104
105
106
107
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
108
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
109
110
111
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
112
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
113
114
115
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

116
    args = get_args()
Mohammad's avatar
Mohammad committed
117
    timers = get_timers()
118
119

    # Model, optimizer, and learning rate.
120
    timers('model-and-optimizer-setup').start()
121
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
122
                                                               model_type)
123
    timers('model-and-optimizer-setup').stop()
124
125
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
126
127

    # Data stuff.
128
129
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
130
        all_data_iterators = [
131
132
133
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
134
135
136
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
137
138
139
140
141
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
142
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
143
144

    # Print setup timing.
145
146
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
147
    print_rank_0('training ...')
148
149

    iteration = 0
150
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
151
        iteration = train(forward_step_func,
152
                          model, optimizer, opt_param_scheduler,
153
154
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
155
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
156

157
158
159
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
160
                                   valid_data_iterator, model,
161
162
                                   iteration, process_non_loss_data_func,
                                   False)
163
164

    if args.save and iteration != 0:
165
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
166
167
168
169
170
171

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
172
173
                                   0, process_non_loss_data_func,
                                   True)
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
191
192
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
193
194
            iterations += 1
        # Reset
195
        update_num_microbatches(0, consistency_check=False)
196
197
198
199
200
201
202
203
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

204

205
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
206
    """Build the model."""
Mohammad's avatar
Mohammad committed
207
    args = get_args()
208
    args.model_type = model_type
209

210
    # Build model.
211
212
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
213
214
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
215
216
217
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
218
219
220
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
221
            this_model = model_provider_func(
222
223
224
                pre_process=pre_process,
                post_process=post_process
            )
225
            this_model.model_type = model_type
226
            model.append(this_model)
227
    else:
228
229
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
255

256
257
    if not isinstance(model, list):
        model = [model]
258

259
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
260
261
262
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
263
264
265
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
266

267
268
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
269
        print(' > number of parameters on (tensor, pipeline) '
270
              'model parallel rank ({}, {}): {}'.format(
271
272
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
273
274
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
275
276

    # GPU allocation.
277
278
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
279
280

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
283

284
285
286
287
288
289
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
290

291
292
293
294
295
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
296
297
298
299
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
300
301
302
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
303

304
    return model
305
306


307
def get_optimizer_param_scheduler(optimizer):
308
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
309
    args = get_args()
310

311
312
313
314
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
317
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
319
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
321
322
323
324
325
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
326
        update_train_iters(args)
327
328
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
329
330
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
331
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
333
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
334
            lr_warmup_steps = args.lr_warmup_samples
335
    else:
336
337
338
        raise Exception(
            'either train-iters or train-samples should be provided.')

339
    opt_param_scheduler = OptimizerParamScheduler(
340
        optimizer,
341
        max_lr=args.lr,
342
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
343
344
345
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
        wd_incr_style=args.weight_decay_incr_style,
350
351
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
352

353
    return opt_param_scheduler
354
355


356
357
358
359
360
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
361
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
362
    args = get_args()
363

364
    model = get_model(model_provider_func, model_type)
365

366
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
                                   (torchDDP, LocalDDP, Float16Module))
368
369
370
371
    # >>>
    # optimizer = get_megatron_optimizer(unwrapped_model, no_wd_decay_cond,
    #                                    scale_lr_cond, lr_mult)
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
372
                                       scale_lr_cond, lr_mult)
373
    # <<<
374

375
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
376
377

    if args.load is not None:
378
379
380
381
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
382
        timers('load-checkpoint').start()
383
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
384
        torch.distributed.barrier()
385
386
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
387
388
389
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
390
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
391
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
392
393
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
394
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
395
396
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
397
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
398
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
399
400
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
401

402
    return model, optimizer, opt_param_scheduler
403
404


405
def train_step(forward_step_func, data_iterator,
406
407
               model, optimizer, opt_param_scheduler,
               ITERATION):
408
409
410
411
412
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
413
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
414
415
        for partition in model:
            partition.zero_grad_buffer()
416
    optimizer.zero_grad()
417

418
419
420
    # >>>
    # Forward pass.
    # <<<
421
    forward_backward_func = get_forward_backward_func()
422
423
424
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
425

426
427
428
    # >>>
    # Empty unused memory.
    # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
429
    if args.empty_unused_memory_level >= 1:
430
431
        torch.cuda.empty_cache()

432
433
434
    # >>>
    # Reduce gradients. (with distributed optimizer option, optimizer
    # now responsible for reducing gradients)
435
    optimizer.reduce_gradients(model)
436
437
438
    # <<<

    # >>>
439
440
    # from lutil import pax
    # pax(0, {"optimizer": optimizer})
441
    # <<<
442

443
444
    # Update parameters.
    timers('optimizer').start()
445
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(ITERATION)
446
447
    timers('optimizer').stop()

448
449
450
451
452
453
    # >>>
    # Gather params gradients. (with distributed optimizer option, optimizer
    # now responsible for gathering updated params)
    optimizer.gather_params()
    # <<<

454
    # Update learning rate.
455
    if update_successful:
456
457
458
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
459
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
460
        skipped_iter = 0
461
462
463
    else:
        skipped_iter = 1

464
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
465
    if args.empty_unused_memory_level >= 2:
466
467
        torch.cuda.empty_cache()

468
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
469
470
471
472
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
473
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
474
475
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
476
477


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
479
                 loss_scale, report_memory_flag, skipped_iter,
480
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
481
482
483
484
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
485

mohammad's avatar
mohammad committed
486
487
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
488
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
489
490
491
492
493
494
495
496
497
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
498
499
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
500
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
501
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
    for key in loss_dict:
mohammad's avatar
mohammad committed
503
        if not skipped_iter:
504
505
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
506
507
508
509
510
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
511
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
512
513
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
514
515
516

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
517

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
519
520
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
521
522
523
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
524
    add_to_logging('forward-backward-send-forward-backward-recv')
525
526
527
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
528
    add_to_logging('backward-send-forward-recv')
529
    add_to_logging('backward-send-backward-recv')
530
    add_to_logging('backward-params-all-reduce')
531
    add_to_logging('backward-embedding-all-reduce')
532
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
533
    add_to_logging('optimizer-unscale-and-check-inf')
534
535
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
536
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
537
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
538

mohammad's avatar
mohammad committed
539
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
540
541
542
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
543
544
545
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
546
    # Tensorboard values.
547
548
549
550
551
552
553
554
555
556
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
557
        for key in loss_dict:
mohammad's avatar
mohammad committed
558
559
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
560
                              args.consumed_train_samples)
561
562
563
564
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
565
566
567
568
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
569
570
571
572
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
573
574
575
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
576
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
577
578
579
580
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
581
582
583
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
601
602

    if iteration % args.log_interval == 0:
603
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
604
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
605
        if writer:
606
607
608
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
609
610
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
611
        log_string += ' consumed samples: {:12d} |'.format(
612
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
613
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
614
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
615
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
616
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
617
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
618
619
620
621
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
622
623
624
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
625
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
626
627
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
628
629
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
630
631
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
632
633
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
634
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
635
636
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
637
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
638
        total_loss_dict[nan_iters_key] = 0
639
        print_rank_last(log_string)
640
641
642
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
644
645
646
647
648
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


649
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
650
651
652
653
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
654
    timers('save-checkpoint').start()
655
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
656
    torch.distributed.barrier()
657
658
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
659
660


661
def train(forward_step_func, model, optimizer, opt_param_scheduler,
662
663
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
664
    """Train the model function."""
Mohammad's avatar
Mohammad committed
665
666
    args = get_args()
    timers = get_timers()
667

668
669
670
    # Write args to tensorboard
    write_args_to_tensorboard()

671
    # Turn on training mode which enables dropout.
672
673
    for model_module in model:
        model_module.train()
674
675
676
677
678
679
680

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

681
    timers('interval-time').start()
682
    print_datetime('before the start of training step')
683
684
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
685
        update_num_microbatches(args.consumed_train_samples)
686
687
688
689
690
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
691
692
693
694
                       opt_param_scheduler
                       # >>>
                       ,ITERATION = iteration)
                       # <<<
695
        iteration += 1
696
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
697
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
698
                                       get_num_microbatches()
699
700

        # Logging.
701
        loss_scale = optimizer.get_loss_scale().item()
702
703
704
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
705
706
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
707
                                          iteration, loss_scale,
708
                                          report_memory_flag, skipped_iter,
709
                                          grad_norm, params_norm, num_zeros_in_grad)
710
711

        # Autoresume
712
713
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
714
            check_adlr_autoresume_termination(iteration, model, optimizer,
715
                                              opt_param_scheduler)
716
717
718
719
720
721

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
722
                                       valid_data_iterator, model,
723
724
                                       iteration, process_non_loss_data_func,
                                       False)
725

726
727
        # Checkpointing
        saved_checkpoint = False
728
729
730
731
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
732
                                         opt_param_scheduler)
733
734
735
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

736
737
738
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
739
                                     opt_param_scheduler)
740
741
            saved_checkpoint = True

742
743
744
745
746
747
748
749
750
751
752
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
753
                                             opt_param_scheduler)
754
                print_datetime('exiting program after {} minutes'.format(train_time))
755
756
                sys.exit()

757
        # Exiting based on iterations
758
        if args.exit_interval and iteration % args.exit_interval == 0:
759
760
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
761
                                         opt_param_scheduler)
762
            torch.distributed.barrier()
763
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
764
            sys.exit()
765

766

mohammad's avatar
mohammad committed
767
    return iteration
768
769


770
771
772
773
774
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
775
    """Evaluation."""
Mohammad's avatar
Mohammad committed
776
    args = get_args()
777
778

    # Turn on evaluation mode which disables dropout.
779
780
    for model_module in model:
        model_module.eval()
781
782
783
784
785
786
787
788
789
790

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
791

792
            forward_backward_func = get_forward_backward_func()
793
794
795
796
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

797
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
798
            if args.empty_unused_memory_level >= 1:
799
800
                torch.cuda.empty_cache()

801
802
803
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
804
                    for key in loss_dict:
805
806
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
807

808
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
809
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
810
                                           * get_num_microbatches()
811
812
813
814
815
816
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

817
    # Move model back to the train mode.
818
819
    for model_module in model:
        model_module.train()
820
821

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
822
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
823

824
    return total_loss_dict, collected_non_loss_data
825
826
827

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
828
829
                               iteration, process_non_loss_data_func,
                               verbose=False):
830
    """Helper function to evaluate and dump results on screen."""
831
    args = get_args()
Mohammad's avatar
Mohammad committed
832
833
    writer = get_tensorboard_writer()

834
835
836
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
837
838
839
840
841
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
842
        if writer:
mohammad's avatar
mohammad committed
843
            writer.add_scalar('{} validation'.format(key),
844
845
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
846
            writer.add_scalar('{} validation vs samples'.format(key),
847
848
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
849
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
850
                writer.add_scalar('{} validation ppl'.format(key), ppl,
851
                                  iteration)
mohammad's avatar
mohammad committed
852
                writer.add_scalar('{} validation ppl vs samples'.format(key),
853
                                  ppl, args.consumed_train_samples)
854

855
856
857
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

858
    length = len(string) + 1
859
860
861
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
862
863


Vijay Korthikanti's avatar
Vijay Korthikanti committed
864
def cyclic_iter(iter):
865
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
866
        for x in iter:
867
868
            yield x

869
870
871
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
872
    args = get_args()
873

874
875
876
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
877
878
879

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
880
881
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
882
        args.consumed_train_samples = args.iteration * args.global_batch_size
883
    if args.iteration > 0 and args.consumed_valid_samples == 0:
884
885
886
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
887

888
    # Data loader only on rank 0 of each model parallel group.
889
    if mpu.get_tensor_model_parallel_rank() == 0:
890
891

        # Number of train/valid/test samples.
892
893
894
895
896
897
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
898
        test_iters = args.eval_iters
899
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
900
901
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
902
903
904
905
906
907
908
909
910
911
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
912
913
914
915
916
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
917
918
919
920
921
922
923
924
925
926
927
928
929

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
930
931
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
932
933
934
935
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
936

937
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
938
939
940
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

941
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
942
943
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
944
945
946
    else:
        train_data_iterator = None

947
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
948
949
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
950
    else:
951
        valid_data_iterator = None
952

953
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
954
955
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
956
957
958
    else:
        test_data_iterator = None

959
    return train_data_iterator, valid_data_iterator, test_data_iterator