training.py 39.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.fp16 import FP16_Module
mohammad's avatar
mohammad committed
41
42
from megatron.optimizer.optimizer import get_megatron_optimizer

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.data.data_loaders import build_pretraining_data_loader
50
from megatron.utils import report_memory
51
52


53
54
55
56
57
58
59
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


60
def pretrain(train_valid_test_dataset_provider, model_provider,
61
             forward_step_func, extra_args_provider=None, args_defaults={}):
62
63
64
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
65
66
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
67
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
68
        4) train the modle using the forward_step_func.
69
70

    Arguments:
71
72
73
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
74
75
76
77
78
79
80
81
82
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
84
85
    """

86
    # Initalize and get arguments, timers, and Tensorboard writer.
87
88
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
89

90
91
92
93
94
95
96
97
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
98
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
99
100
101
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

102
    args = get_args()
Mohammad's avatar
Mohammad committed
103
    timers = get_timers()
104
105

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
106
107
108
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
109
110
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
111
112

    # Data stuff.
113
114
115
116
117
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
118
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
119
120
121

    # Print setup timing.
    print_rank_0('done with setups ...')
122
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
123
    print_rank_0('training ...')
124
125

    iteration = 0
126
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
127
128
129
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
130
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
131

132
133
134
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
135
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
136
                                   iteration, False)
137
138

    if args.save and iteration != 0:
139
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
140
141
142
143
144
145

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
146
                                   0, True)
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
164
165
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
166
167
            iterations += 1
        # Reset
168
        update_num_microbatches(0, consistency_check=False)
169
170
171
172
173
174
175
176
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

177

Mohammad's avatar
Mohammad committed
178
def get_model(model_provider_func):
179
    """Build the model."""
Mohammad's avatar
Mohammad committed
180
    args = get_args()
181
182

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
183
    model = model_provider_func()
184

185
186
187
188
    # Set tensor model parallel attributes if not set.
    for param in model.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

189
190
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
191
        print(' > number of parameters on (tensor, pipeline) '
192
              'model parallel rank ({}, {}): {}'.format(
193
194
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
195
196
197
198
199
200
201
202
203
204
205
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
206
207
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
208
209
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
210
        model = LocalDDP(model)
211
212
        return model

213
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
214
                              'Exiting.'.format(args.DDP_impl))
215
216


Mohammad's avatar
Mohammad committed
217
def get_learning_rate_scheduler(optimizer):
218
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
219
    args = get_args()
220

221
222
223
224
225
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
226
227
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
228
229
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
230
231
232
233
234
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
235
        update_train_iters(args)
236
237
238
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
239
240
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
241
242
        else:
            warmup_steps = args.lr_warmup_samples
243
    else:
244
245
246
        raise Exception(
            'either train-iters or train-samples should be provided.')

247
248
    lr_scheduler = AnnealingLR(
        optimizer,
249
        max_lr=args.lr,
250
        min_lr=args.min_lr,
251
252
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
253
        decay_style=args.lr_decay_style,
254
255
256
257
258
259
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
260
def setup_model_and_optimizer(model_provider_func):
261
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
262
    args = get_args()
263

Mohammad's avatar
Mohammad committed
264
    model = get_model(model_provider_func)
265
266
267
268
269
270

    unwrapped_model = model
    while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
        unwrapped_model = unwrapped_model.module
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
271
    lr_scheduler = get_learning_rate_scheduler(optimizer)
272
273

    if args.load is not None:
274
275
276
277
278
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
279
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
280
281
282
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
283
284
285
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
286
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
287
288
289
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
290
291
292
293
294
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

295
296
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
297
        print("Initializing ICT from pretrained BERT model", flush=True)
298
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
299

300
301
302
    return model, optimizer, lr_scheduler


303
304
305
306
307
308
309
310
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
311
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
312
313
314
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
315
316
317
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
318
                                       device=torch.cuda.current_device(),
319
                                       dtype=dtype)
320
321
322
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
323
                                       device=torch.cuda.current_device(),
324
                                       dtype=dtype)
325
326
327
328
329
330

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
331
                                    group=mpu.get_pipeline_model_parallel_group())
332
333
334
335
336

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
337
    """Backward step."""
Mohammad's avatar
Mohammad committed
338
339
    args = get_args()
    timers = get_timers()
340

341
342
343
344
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

345
    # Backward pass.
mohammad's avatar
mohammad committed
346
347
348
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
349

350
351
352
353
354
355
356
357
    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


358
359
360
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
361
362
    args = get_args()

363
    if not mpu.is_pipeline_first_stage():
364
        timers('forward-recv').start()
365
366
367
368
369
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
370
        timers('forward-recv').stop()
371
372
373
374
    else:
        input_tensor = None

    # Forward model for one step.
375
    timers('forward-compute').start()
376
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
377
    timers('forward-compute').stop()
378
379
380

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
381
        output_tensor = loss / get_num_microbatches()
382
383
        losses_reduced.append(loss_reduced)
    else:
384
        timers('forward-send').start()
385
386
387
388
389
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
390
        timers('forward-send').stop()
391
392
393
394
395
396
397
398
399
400
401
402

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
403
        timers('backward-recv').start()
404
405
406
407
408
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
409
        timers('backward-recv').stop()
410
411

    # Backward pass for one step.
412
    timers('backward-compute').start()
413
414
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
415
    timers('backward-compute').stop()
416
417

    if not mpu.is_pipeline_first_stage():
418
        timers('backward-send').start()
419
420
421
422
423
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
424
        timers('backward-send').stop()
425
426


427
428
429
430
431
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
432
433
    args = get_args()

434
435
436
437
438
439
440
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
441
        output_tensor = loss / get_num_microbatches()
442
443
444
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
445
        timers('forward-send-backward-recv').start()
446
447
448
449
450
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
451
        timers('forward-send-backward-recv').stop()
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
466
        timers('backward-send-forward-recv').start()
467
468
469
470
471
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
472
        timers('backward-send-forward-recv').stop()
473
474
475
476
477
478
    else:
        input_tensor = None

    return input_tensor


479
480
481
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
482
483
    args = get_args()

484
    losses_reduced = []
mohammad's avatar
mohammad committed
485
    for i in range(get_num_microbatches()):
486
487
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
488
        output_tensor = loss / get_num_microbatches()
489
490
491
492
493
494
495
496
497
498
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
499

500
501
502
503
504
505
506

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
507
    num_microbatches = get_num_microbatches()
508
509
510
511
512
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
513
514
515
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
516
517
518
519
520

    input_tensors = []
    output_tensors = []
    losses_reduced = []

521
522
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
523
524
525
526
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
527

528
    # Before running 1F1B, need to receive first forward tensor.
529
530
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
531
    if num_microbatches_remaining > 0:
532
533
534
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
535
            timers('forward-recv').start()
536
537
538
539
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
540
            timers('forward-recv').stop()
541
542

    # Run 1F1B.
543
544
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
545
546
547
548
549
550
551
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

552
553
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
554
555
556
557
558
559
560
561
562
563
564
565
566
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
567
    optimizer.zero_grad()
568
569
570
571
572
573
574

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
575
576
577

    # All-reduce if needed.
    if args.DDP_impl == 'local':
578
        timers('backward-params-all-reduce').start()
579
580
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
581
        timers('backward-params-all-reduce').stop()
582

583
584
585
586
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
587
    timers('backward-embedding-all-reduce').start()
588
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
589
            mpu.get_pipeline_model_parallel_world_size() > 1:
590
591
592
593
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

594
595
596
597
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
598
    timers('backward-embedding-all-reduce').stop()
599

600
601
    # Update parameters.
    timers('optimizer').start()
mohammad's avatar
mohammad committed
602
    update_successfull = optimizer.step()
603
604
605
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
606
    if update_successfull:
607
608
609
610
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
611
        skipped_iter = 0
612
613
614
    else:
        skipped_iter = 1

615
    if mpu.is_pipeline_last_stage():
616
617
618
619
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
620
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
621
622
        return loss_reduced, skipped_iter
    return {}, skipped_iter
623
624


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
625
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
626
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
627
628
629
630
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631

mohammad's avatar
mohammad committed
632
633
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
634
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
635
636
637
638
639
640
641
642
643
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
644
645
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
646
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
647
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
648
    for key in loss_dict:
mohammad's avatar
mohammad committed
649
        if not skipped_iter:
650
651
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
652
653
654
655
656
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
657
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
658
659
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
660
661
662

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
663

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
664
665
666
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
667
668
669
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
670
    add_to_logging('forward-send-backward-recv')
671
672
673
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
674
    add_to_logging('backward-send-forward-recv')
675
    add_to_logging('backward-params-all-reduce')
676
    add_to_logging('backward-embedding-all-reduce')
mohammad's avatar
mohammad committed
677
678
679
680
    add_to_logging('optimizer-copy-to-master-grad')
    add_to_logging('optimizer-unscale-and-check-inf')
    add_to_logging('optimizer-clip-master-grad')
    add_to_logging('optimizer-copy-master-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
681
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
682
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683

mohammad's avatar
mohammad committed
684
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
685
686
687
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
688
689
690
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
691
    # Tensorboard values.
mohammad's avatar
mohammad committed
692
693
694
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
695
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
696
697
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
698
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
        for key in loss_dict:
mohammad's avatar
mohammad committed
700
701
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
702
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
703
        if args.fp16:
mohammad's avatar
mohammad committed
704
705
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
706
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
707
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
708
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
709
710
711

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
712
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
713
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
714
715
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
716
717
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
718
        log_string += ' consumed samples: {:12d} |'.format(
719
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
720
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
721
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
722
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
723
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
724
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
725
726
727
728
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
729
730
731
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
732
733
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
734
735
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
736
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
737
738
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
739
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
740
        total_loss_dict[nan_iters_key] = 0
741
        print_rank_last(log_string)
742
743
744
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
745
746
747
748
749
750
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


751
752
753
754
755
756
757
758
759
760
761
762
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


763
def train(forward_step_func, model, optimizer, lr_scheduler,
764
          train_data_iterator, valid_data_iterator):
765
    """Train the model function."""
Mohammad's avatar
Mohammad committed
766
767
    args = get_args()
    timers = get_timers()
768

769
770
771
    # Write args to tensorboard
    write_args_to_tensorboard()

772
773
774
775
776
777
778
779
780
781
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
782
    print_datetime('before the start of training step')
783
784
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
785
        update_num_microbatches(args.consumed_train_samples)
786
787
788
789
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
790
                                             lr_scheduler)
791
        iteration += 1
792
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
793
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
794
                                       get_num_microbatches()
795
796

        # Logging.
Mohammad's avatar
Mohammad committed
797
798
        loss_scale = None
        if args.fp16:
mohammad's avatar
mohammad committed
799
            loss_scale = optimizer.get_loss_scale().item()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
800
801
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
802
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
803
                                          report_memory_flag, skipped_iter)
804
805

        # Autoresume
806
807
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
808
            check_adlr_autoresume_termination(iteration, model, optimizer,
809
                                              lr_scheduler)
810
811
812
813
814
815

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
816
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
817
                                       iteration, False)
818

819
820
821
822
823
824
825
826
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
843
        if args.exit_interval and iteration % args.exit_interval == 0:
844
845
846
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
847
            torch.distributed.barrier()
848
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
849
            sys.exit()
850

851

mohammad's avatar
mohammad committed
852
    return iteration
853
854


Mohammad's avatar
Mohammad committed
855
def evaluate(forward_step_func, data_iterator, model, verbose=False):
856
    """Evaluation."""
Mohammad's avatar
Mohammad committed
857
    args = get_args()
858
859
860
861
862
863
864
865
866
867
868
869
870

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
871

mohammad's avatar
mohammad committed
872
            for _ in range(get_num_microbatches()):
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
897

898
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
899
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
900
                                           * get_num_microbatches()
901
902
903
904
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
905
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
906
907
908
909
910

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
911
                               iteration, verbose=False):
912
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
913
914
915
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
916
917
918
919
920
921
922
923
924
925
926
927
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
928
929
930
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
931
932


933
934
935
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
936
    args = get_args()
937

938
939
940
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
941
942
943

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
944
945
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
946
        args.consumed_train_samples = args.iteration * args.global_batch_size
947
    if args.iteration > 0 and args.consumed_valid_samples == 0:
948
949
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
950
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
951
            args.eval_iters * args.global_batch_size
952

953
    # Data loader only on rank 0 of each model parallel group.
954
    if mpu.get_tensor_model_parallel_rank() == 0:
955
956

        # Number of train/valid/test samples.
957
958
959
960
961
962
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
963
        test_iters = args.eval_iters
964
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
965
966
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
967
968
969
970
971
972
973
974
975
976
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
977
978
979
980
981
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
982
983
984
985
986
987
988
989
990
991
992
993
994

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
995
996
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
997
998
999
1000
1001
1002
1003
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1004
1005
1006
    else:
        train_data_iterator = None

1007
1008
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1009
    else:
1010
        valid_data_iterator = None
1011

1012
1013
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1014
1015
1016
    else:
        test_data_iterator = None

1017
    return train_data_iterator, valid_data_iterator, test_data_iterator